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ABSTRACT

The main purpose of this thesis is to provide a direct, convergent and easy to im-

plement numerical method to obtain the approximate solution for nonlinear Volterra

integral equations and nonlinear Volterra integro-differential equations . Algorithms

based on iterative collocation method is developed for the numerical solution of these

kinds of equations. We also provide a rigorous error analysis. A theoretical proof is

given and we present some numerical results which illustrate the performance of the

methods.

Key Words: Nonlinear Volterra integral equations, Volterra integro-differential equa-

tions, Collocation method, Continuous collocation method, Iterative Method, Lagrange

polynomials, Convergence analysis,Error estimation.



RÉSUMÉ

L’objectif essentiel de ce travail consiste à résoudre numériquement des équations

intégrales de Volterra non linéaires et des équations integro-différentielles non linéaires

de Volterra par la méthode de " collocation itérative" en utilisant les polynômes de

Lagrange. Des exemples numériques sont présentés pour confirmer les estimations

théoriques et illustrer la convergence de la méthode.

Mots-clés : Équations intégo-différentielle non linéaires de Volterra, Équations

intégrales de Volterra, Méthode de collocation, Polynômes de Lagrange.



ملخص

الخطية. الغير التكاملية-التفاضلية وكذا التكاملية فولتيرا معادلات لحل جديدة خوارزمية مع مقترحة طريقة المذكرة هذه في قدمنا

لاغرانج. حدود كثيرات بالاعتماد التكرارية٬ التجميع طريقة باستخدام التكاملية فولتيرا لمعادلات التقريبي الحل ايجاد يتم حيث
اخرى طرق نتائج مع الطريقة هذه نتائج مقارنة تمت حيث فيها الحسابات٬ سهولة و الطريقة كفاءة ملاحظة الممكن من كما
على الحصول تم وقد الخطية. الغير التكاملية-التفاضلية وكذا التكاملية فولتيرا معادلات لحل التوضيحية الأمثلة بعض خلال من

جيدة. نتائج

الكفتاحية الكلمات
لاغرانج حدود كثيرات التكرارية٬ التجميع طريقة الخطية٬ الغير التكاملية-التفاضلية٬ التكاملية٬ فولتيرا معادلات
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INTRODUCTION

The theory and the applications of the integrals equations are important

subject in applied mathematics. Integral equations or integro-differential equations

describe many applications in science and engineering, also occur as reformulations of

other mathematical problems. For examples the Volterra’s population growth model,

biological species living together, the heat transfer and the heat radiation are among

many areas that are described by integral equations.

The first integral equation mentioned in the mathematical literature is due to Abel

and can be found in almost any book on this subject (see, for instance, [20]). Abel found

this equation in 1812, starting from a problem in mechanics. He gave a very elegant

solution that was published in 1826.

Starting in 1896, Vito Volterra built up a theory of integral equations, viewing their

solutions as a problem of finding the inverses of certain integral operators. In 1900,

Ivar Fredholm made his famous contribution that led to a fascinating period in the

development of mathematical analysis. Poincaré, Fréchet, Hilbert, Schmidt, Hardy

and Riesz were involved in this new area of research. Volterra integral equations

belong to its owner Vito Volterra, among the most popular types of integral equations.

It arises in many varieties of mathematical, scientific, and engineering problems. One
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Introduction

such problem is the solution of parabolic differential equations with initial boundary

conditions [25].

The nonlinear Volterra integro-differential equation appeared after its establishment

by Volterra. It appears in many physical applications such as glass-forming process,

heat transfer, diffusion process in general, neutron diffusion and biological species

coexisting together with increasing and decreasing rates of generating. More details

about the sources where these equations arise can be found in physics, biology and

books of engineering applications. In the following examples, we will briefly describe

a class of Volterra integral and integro-differential equations. More applications and

sources of Volterra integral equations can be found [12, 45, 67].

Example 01 : In this example, we will study the Volterra model for population

growth of a species within a closed system [67]. The population model of Volterra is

characterized by the nonlinear Volterra integro-differential equation

dP
dt

= aP − bP2
− cP

∫ t

0
P(x)dx, P(0) = P0

where P = P(t) denotes the population at time t, a, b and c are constants and positive

parameters a > 0 is the birth rate coffecient, b > 0 is the crowding coffecient, c > 0 is

the toxicity coffecient and P0 is the initial population. The coffecient c indicates the

essential behavior of the population evolution before its level falls to zero in the long

run.

There are many existing numerical methods for solving Volterra integro-differential

equations, such as Legendre spectral collocation method [69], Runge-Kutta method

[13], spectral method [70, 68], Bernstein’s approximation method [47], Polynomial

collocation method [14, 18, 16, 53, 64], Tau method [26, 34], Haar and Legendre wavelets

method [43, 63], Taylor collocation method [41, 42].

The aim of this thesis is to apply a new direct iterative collocation method based

on the use of Lagrange polynomials for nonlinear Volterra integrals equations and the

nonlinear integro-differential equations. This method is based on the idea of approach-
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ing the exact solution of a given integral equation using a suitable function, belonging

to a chosen finite dimensional space. The approximate solution must satisfy the inte-

gral equation on a certain subset of the interval (called the set of collocation points).

We consider as spaces of approximation, the real polynomial spline spaces. The main

advantages of this direct iterative collocation method are:

(i) The approximate solution is given by using explicit formulas.

(ii) This method has a convergence order.

(iii) There is no algebraic system needed to be solved, which makes the proposed

algorithm very effective and easy to implement.

Our thesis is organized as follows:

In the first chapter, we provide the fundamental notions, definitions and some nec-

essary theorems will be needed for the following chapters, such as the classifications

of integral and integro-differential equations, Leibniz rule, the linearity and the ho-

mogeneity concepts of integral equations, the conversion process of an Initial Value

Problem to Volterra integral and integro-differntaille equation and discrete inequali-

ties.

The purpose of the first part, is to give a numerical method based on the use of

Lagrange polynomials to construct a collocation solution in the two piecewise polyno-

mials splines spaces S(−1)
m−1(ΠN) and S(0)

m (ΠN) for approximating the solution of nonlinear

Volterra integral equations . We prove the convergence of the approximate solution to

the exact solution. Numerical examples illustrate the theoretical results.

In the second part, we provide a new direct numerical method for first-order nonlinear

Volterra integro-differential equations (VIDEs) in the space S(0)
m (ΠN) and S(1)

m+1(ΠN), the

space of continuous polynomial spline functions . We developed an algorithm based

on the use of Lagrange polynomials for the numerical solution . It is shown that this

algorithm is convergent. Numerical results are presented to prove the effectiveness of

the presented algorithm.

Finally, we summarize the contributions of this thesis and we suggest new avenues,

improvements for future research and perspectives.

3



CHAPTER 1

PRELIMINARY AND AUXILIARY

RESULTS
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Generals and fundamentals notions

An integral equation is defined as an equation in which the unknown function u(t)

to be determined appear under the integral sign. The subject of integral equations is

one of the most useful mathematical tools in both pure and applied mathematics. It has

enormous applications in many physical problems. Many initial and boundary value

problems associated with ordinary differential equation (ODE) and partial differential

equation (PDE) can be transformed into problems of solving some approximate integral

equations. The development of science has led to the formation of many physical laws,

which, when restated in mathematical form, often appear as differential equations [67].

An integral equation is an equation in which the unknown function u(t) appears under

an integral sign. A standard integral equation in u(t) is of the form:

u(t) = f (t) + λ

h(t)∫
1(t)

K(t, s)u(s)ds,

where 1(t) and h(t) are the limits of integration, λ is a constant parameter, and k(t, s)

is a function of two variables t and s called the kernel of the integral equation. The

function u(t) that will be determined appears under the integral sign, and it appears

inside the integral sign and outside the integral sign as well. The functions f (t) and

k(t, s) are given in advance. It is to be noted that the limits of integration 1(t) and h(t)

may be both variables, constants, or mixed.

An integro-differential equation is an equation in which the unknown function u(t)

appears under an integral sign and contains an ordinary derivative u(n)(t) as well. A

standard integro-differential equation is of the form:

u(n)(t) = f (t) + λ

h(t)∫
1(t)

K(t, s)u(s)ds,

where 1(t), h(t), f (t), λ and the kernel k(t, s) are as prescribed before. Integral equa-

tions and integro-differential equations will be classified into distinct types according

to the limits of integration and the kernel k(t, s). [67].

5
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1.1 Classifications of integral and intergro-differential equa-

tions

The most integral and integro-differential equations fall under two main classes namely

Fredholm and Volterra integral and integro-differential equations.

Fredholm integral and integro-differential equations

Fredholm integral equations:

Fredholm integral equations arise in many scientific applications. It was also shown

that, this equation can be derived from boundary value problems. Erik Ivar Fredholm

(1866-1927) is best remembered for his work on integral equations and spectral the-

ory. Fredholm was a Swedish mathematician who established the theory of integral

equations and his 1903 paper in Acta Mathematica played a major role in the establish-

ment of operator theory (Wazwaz (2011)). The most standard form of Fredholm linear

integral equations is given by the following form

v(t)u(t) = f (t) + λ

b∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b, (1.1)

where the limit of integration a and b are constants and the unknown function u(t)

appears under the integral sign. Where k(t, s) is the kernel of the integral equation and

λ is a parameter. The Eq. (1.1) is called linear because the unknown function u(t) under

the integral sign occurs linearly, i.e. the power of u(t) is one.

The value of v(t) will give the following kinds of Fredholm integral equations:

If v(t) = 0, then Eq. (1.1) yields

f (t) = λ

b∫
a

K(t, s)y(s)ds, a ≤ t, s ≤ b,

6
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which is called Fredholm integral equation of the first kind.

If the function v(t) = 1, then Eq. (1.1) becomes simply

u(t) = f (t) + λ

b∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b,

and this equation is called Fredholm integral equation of second kind.

If v(t) , 0, then Eq.(1.1) becomes Fredholm integral equations of third kind. Fredholm

integral equation is of the first kind if the unknown function u(t) appears only under

the integral sign.

Nonlinear Fredholm integral equations:

The nonlinear Fredholm integral equations of the second kind is given by the following

form

u(t) = f (t) + λ

b∫
a

K(t, s,u(s))ds, a ≤ t, s ≤ b,

where the unknown function u(t) occurs inside and outside the integral sign, λ is a

parameter, and a and b are constants. For this type of equations, the kernel k and the

function f (t) are given real-valued functions.

Nonlinear Fredholm-Hammerstein integral equations:

Nonlinear Fredholm-Hammerstein integral equations is given by the form,

u(t) = f (t) + λ

b∫
a

K(t, s)F(s,u(s))ds, a ≤ t, s ≤ b,

Nonlinear Fredholm integro-differential equations:

The nonlinear Fredholm integro-differential equations is given by the following form,

un(t) = f (t) +

b∫
a

K(t, s,u(s),u′(s), . . . ,un−1(s))ds, uk(a) = bk, 0 ≤ k ≤ n − 1, (1.2)

7
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where un(t) = dnu
dtn Because the resulted equation in (1.2) combines the differential

operator and the integral operator, then it is necessary to define initial conditions

u(0), u′(0), ...,un−1(0) for the determination of the particular solution u(t) of the equa-

tion (1.2). Any Fredholm integro-differential equation is characterized by the existence

of one or more of the derivatives u′(t), u′′(t), ... outside the integral sign. The Fredholm

integro-differential equations of the second kind appear in a variety of scientific appli-

cations such as the theory of signal processing and neural networks.

Nonlinear Fredholm-Hammerstein integro-differential equations:

The nonlinear Fredholm-Hammerstein integro-differential equations of the second kind

is of the form,

un(t) = f (t) +

b∫
a

K(t, s)F(s,u(s),u′(s), . . . ,un−1(s))ds,

Volterra integral and integro-differential equations

It is well known that linear and nonlinear Volterra integral equations arise in many sci-

entific fields such as the population dynamics, spread of epidemics, and semi-conductor

devices. Volterra started working on integral equations in 1884, but his serious study

began in 1896. The name integral equation was given by du Bois-Reymond in 1888.

However, the name Volterra integral equation was first coined by Lalesco in 1908 [67].

Volterra integral equations:

The standard form of linear Volterra integral equations, where the limits of integration

are functions of t rather than constants, are of the form,

v(t)u(t) = f (t) + λ

t∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b, (1.3)

where the unknown function u(t) under the integral sign occurs linearly as stated

before. It is worth noting that (1.3) can be viewed as a special case of Fredholm integral

equation when the kernel k(t, s) vanishes for s > t, t is in the range of integration [a, b].

8
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As in Fredholm equations, Volterra integral equations fall under the following kinds,

depending on the value of v(t), namely:

First, when v(t) = 0, Eq. (1.3) becomes,

0 = f (t) + λ

t∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b,

and in this case the integral equation is called Volterra integral equation of the first

kind.

Secondly, when v(t) = 1, Eq. (1.3) becomes,

u(t) = f (t) + λ

t∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b,

and in this case the integral equation is called Volterra integral equation of the second

kind.

Thirdly, when v(t) , 0, Eq. (1.3) becomes Volterra integral equations of third kind.

Nonlinear Volterra integral equations:

The nonlinear Volterra integral equation of the second kind is represented by the form,

u(t) = f (t) + λ

t∫
a

K(t, s,u(s))ds,

The nonlinear Volterra integral equation of the first kind is expressed in the form,

f (t) = λ

t∫
a

K(t, s,u(s))ds,

Nonlinear Volterra-Hammerstein integral equations:

The nonlinear Volterra-Hammerstein integral equation of the second kind is repre-

9



Generals and fundamentals notions

sented by the form

u(t) = f (t) + λ

t∫
a

K(t, s)F(s,u(s))ds,

Volterra Integro-differential equations:

Volterra, in the early 1900, studied the population growth, where new type of equations

have been developed and was termed as integro-differential equations. In this type of

equations, the unknown function u(t) occurs in one side as an ordinary derivative, and

appears on the other side under the integral sign. Several phenomena in physics and

biology give rise to this type of integro-differential equations. Further, we point out

that an integro-differential equation can be easily observed as an intermediate stage

when we convert a differential equation to an integral equation in next section.

The Volterra integro-differential equation appeared after its establishment by Volterra.

It then appeared in many physical applications such as glass forming process, nanohy-

drodynamics, heat transfer, diffusion process in general, neutron diffusion and biolog-

ical species coexisting together with increasing and decreasing rates of generating, and

wind ripple in the desert. More details about the sources where these equations arise

can be found in physics, biology and engineering applications books (see, for example

Brunner [12], Volterra [60]). To determine the exact solution for the integro-differential

equation, the initial conditions should be given. The Volterra integro-differential equa-

tions can be converted to an integral equation by using Leibnitz rule .

Nonlinear Volterra integro-differential equations:

The nonlinear Volterra integro-differential equation of the second kind is in the form

u(n)(t) = f (t) +

t∫
a

K(t, s,u(s),u′(s), . . . ,un−1(s))ds, u(k)(a) = bk, 0 ≤ k ≤ n − 1,

and the standard form of the nonlinear Volterra integro-differential equation of the first

kind is given by
t∫

a

K(t, s,u(s),u′(s), . . . ,un−1(s))ds = f (t),

10
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Nonlinear Volterra-Hammerstein integro-differential equations:

The nonlinear Volterra-Hammerstein integro-differential equation of the second kind

is in the form

u(n)(t) = f (t) +

t∫
a

K(t, s)F(s,u(s),u′(s), . . . ,un−1(s))ds, u(k)(a) = bk, 0 ≤ k ≤ n − 1,

Volterra-Fredholm integral and integro-differential equations

Volterra-Fredholm integral equations:

The Volterra-Fredholm integral equation, which is a combination of disjoint Volterra

and Fredholm integrals, appears in one integral equation. The Volterra-Fredholm

integral equations arise from the modelling of the spatiotemporal development of

an epidemic, from boundary value problems and from many physical and chemical

applications [67]. The standard form of the linear Volterra-Fredholm integral equation

is in the form

u(t) = f (t) +

t∫
a

K1(t, s)u(s)ds +

b∫
a

K2(t, s)u(s)ds,

where k1(t, s) and k2(t, s) are the kernels of the equation.

Nonlinear Volterra-Fredholm integral equations:

The standard form of the Nonlinear Volterra-Fredholm integral equation is in the form

u(t) = f (t) +

t∫
a

K1(t, s,u(s))ds +

b∫
a

K2(t, s,u(s))ds,

Nonlinear Volterra-Fredholm-Hammerstein integral equations:

The standard form of the Nonlinear Volterra-Fredholm-Hammerstein integral equation

11
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is in the form

u(t) = f (t) +

t∫
a

K1(t, s)F(s,u(s))ds +

b∫
a

K2(t, s)G(s,u(s))ds,

where k1(t, s) and k2(t, s) are the kernels of the equation.

Volterra-Fredholm integro-differential equations:

The Volterra-Fredholm integro-differential equation, which is a combination of disjoint

Volterra and Fredholm integrals and differential operator, may appear in one integral

equation. The Volterra-Fredholm integro-differential equations arise from many phys-

ical and chemical applications similar to the Volterra-Fredholm integral equations [5],

[6], [61], [62]. The standard form of the Volterra-Fredholm integro-differential equation

is in the form,

u(n)(t) = f (t) +

t∫
a

K1(t, s,u(s),u′(s), . . . ,un−1(s))ds +

b∫
a

K2(t, s,u(s),u′(s), . . . ,un−1(s))ds.

Nonlinear Volterra-Fredholm-Hammerstein integro-differential equations:

u(n)(t) = f (t)+

t∫
a

K1(t, s)F(t, s,u(s),u′(s), . . . ,un−1(s))ds+

b∫
a

K2(t, s,u(s),u′(s), . . . ,un−1(s))ds.

Singular integral equations

Volterra integral equations of the first kind,

f (t) = λ

h(t)∫
1(t)

K(t, s)u(s)ds,

12
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or of the second kind

u(t) = f (t) + λ

h(t)∫
1(t)

K(t, s)u(s)ds,

are called singular if one of the limit of integration 1(t), h(t) is infinite or the kernel k(t, s)

becomes unbounded at one or more points in the interval of integration. We focus on

concern on equation of the form:

u(t) = f (t) + λ

t∫
0

1
(t − s)α

u(s)ds, 0 ≤ α ≤ 1, (1.4)

or of the second kind

f (t) = λ

t∫
0

1
(t − s)α

u(s)ds, 0 ≤ α ≤ 1, (1.5)

The Eq. (1.4) and Eq.(1.5) are called generalized Abel’s integral equation and weakly

singular integral equations respectively.

On the other hand, the well known weakly singular Fredholm integral equations of the

form,

u(t) = f (t) +

1∫
0

k(t, s)u(s)ds, 0 ≤ α ≤ 1,

where the singularity of kernel may be stated in the forms k(t, s) =
1

(t − s)α
or k(t, s) =

1
(1 − t)α

.

Definition 1.1.1 (The homogeneity property)

We set f (t) = 0 in Fredholm or Volterra integral and integro-differential equations as given in

the above, the resulting equations is called a homogeneous integral and integro-differential

equations, otherwise it is called nonhomogeneous or inhomogeneous integral and integro-

differential equations.

13
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Theorem 1.1.1 (Leibnits) Let f (x) be continuous [a, b],so:

∀x ∈ [a, b],

x∫
0

x1∫
0

...

xn−1∫
0

f (xn)dxn...dx1 =
1

(n − 1)!

x∫
a

(x − t)n−1 f (t)dt.

1.2 Conversion of differential equations to integral equa-

tions

In general, the initial values problems (IVP) can be transformed to Volterra integral

equations, and the boundary values problems (BVP) can be transformed to Fredholm

integral equations and virse versa

IVP to Volterra integral equations:

In this section, we will study the technique that will convert an initial value problem

(IVP) to an equivalent Volterra integral equation and Volterra integro-differential equa-

tion as well [67]. For simplicity reasons, we will apply this process to a second order

initial value problem given by

u′′(t) + p(t)u′(t) + q(t)u(t) = 1(t), (1.6)

u(0) = α,u′(0) = β,

where α and β are constants. The functions p(t) and q(t) are analytic functions, and 1(t)

is continuous through the interval of discussion. To achieve our goal we first set

u′′(t) = v(t), (1.7)

14
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where v(t) is a continuous function. Integrating both sides of (1.7) from 0 to t yields

u′(t) − u′(0) =

t∫
0

v(s)ds,

or equivalently

u′(t) = β +

t∫
0

v(s)ds, (1.8)

Integrating both sides of (1.8) from 0 to t yields

u(t) − u(0) = βt +

t∫
0

s∫
0

v(r)drds,

or equivalently

u(t) = α + βt +

t∫
0

(t − s)v(s)ds, (1.9)

obtained upon using the formula that reduce double integral to a single integral that

was discussed in the next section. Substituting (1.7), (1.8), and (1.9) into the initial value

problem (1.6) yields the Volterra integral equation:

u(t) + p(t)

β +

t∫
0

v(s)ds

 + q(t)

α + βt +

t∫
0

(t − s)v(t)dt

 = 1(t).

The last equation can be written in the standard Volterra integral equation form:

v(t) = f (t) +

t∫
0

k(t, s)v(s)ds, (1.10)

where

k(t, s) = p(t) + q(t)(t − s),

15



Generals and fundamentals notions

and

f (t) = 1(t) −
[
βp(t) + αq(t) + βtq(t)

]
.

It is interesting to point out that by differentiating Volterra equation (1.10) with respect

to t, using Leibnitz rule, we obtain an equivalent Volterra integro-differential equation

in the form:

u′(t) + k(t, t) = f ′(t) −

t∫
0

∂k(t, s)
∂t

u(s)ds, u(0) = f (0),

The technique presented above to convert initial value problems to equivalent Volterra

integral equations can be generalized by considering the general initial value problem:

u(n)(t) + a1un−1 + ... + an−1u
′

+ anu = 1(t), (1.11)

subject to the initial conditions

u(0) = c0,u′(0) = c1,u′′(0) = c2, ...,un−1 = cn−1.

Let v(t) be a continuous function on the interval of discussion, and we consider the

transformation:

u(n)(t) = v(t). (1.12)

Integrating both sides with respect to t gives

u(n−1)(t) = cn−1 +

t∫
0

v(t)dt.

Integrating again both sides with respect to t yields

u(n−2)(t) = cn−2 + cn−1t +

t∫
0

t∫
0

v(s)dsds

= cn−2 + cn−1t +

t∫
0

(t − s)v(s)ds,
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obtained by reducing the double integral to a single integral. Proceeding as before we

find

u(n−3)(t) = cn−3 + cn−2t +
1
2

cn−1t2 +

t∫
0

t∫
0

t∫
0

v(s)dsdsds

= cn−3 + cn−2t +
1
2

cn−1t2 +
1
2

t∫
0

(t − s)2v(s)ds.

Continuing the integration process leads to

u(t) =

n−1∑
k=0

ck

k!
tk +

1
(n − 1)!

t∫
0

(t − s)n−1v(s)ds. (1.13)

Substituting (1.12)–(1.13) into (1.11) gives

u(t) = f (t) +

t∫
0

k(t, s)v(s)ds, (1.14)

where

k(t, s) =

n∑
k=1

an

k − 1!
(t − s)k

− 1,

and

f (t) = 1(t) −
n∑

j=1

a j

 j∑
k=1

cn − k
( j − k)!

t j

 .
Notice that the Volterra integro-differential equation can be obtained by differentiating

(1.14).

The following examples will highlight the process to convert initial value problem to

an equivalent Volterra integral equation.
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BVP to Fredholm integral equations:

In this section, we will convert a boundary value problem to an equivalent Fredholm

integral equation. The method is similar to the method that was presented in the above

section for converting Volterra equation to IVP, with the exception that boundary con-

ditions will be used instead of initial values. In this case we will determine another

initial condition that is not given in the problem. The technique requires more work

if compared with the initial value problems when converted to Volterra integral equa-

tions. Without loss of generality, we will present two specific distinct boundary value

problems (BVPs) to derive two distinct formulas that can be used for converting BVP

to an equivalent Fredholm integral equation [67].

Type I: We first consider the following boundary value problem:

u′′(t) + 1(t)u(t) = h(t), 0 ≤ t ≤ 1, (1.15)

with the boundary conditions:

u(0) = α and u(1) = β,

we start as in the previous section and set

u′′(t) = v(t), (1.16)

integrating both sides of (1.16) from 0 to t we obtain

t∫
0

u′′(s)ds =

t∫
0

v(s)ds,

that gives

u′(t) = u′(0) +

t∫
0

v(s)ds, (1.17)
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where the initial condition u′(0) is not given in a boundary value problem. The condition

u′(0) will be determined later by using the boundary condition at t = 1. Integrating

both sides of (1.17) from 0 to t gives

u(t) = u(0) + tu′(0) +

t∫
0

t∫
0

v(s)dsds,

or equivalently

u(t) = α + tu′(0) +

t∫
0

(t − s)v(s)ds, (1.18)

obtained upon using the condition u(0) = α and by reducing double integral to a single

integral. To determine u′(0), we substitute t = 1 into both sides of (1.15) and using the

boundary condition at u(1) = β we find

u(1) = α + u′(0) +

1∫
0

(1 − s)v(s)ds,

that gives

β = α + u′(0) +

1∫
0

(1 − s)v(s)ds.

This in turn gives

u′(0) = β − α −

1∫
0

(1 − s)v(s)ds. (1.19)

Substituting (1.19) into (1.18) gives

u(t) = α + (β − α)t −

1∫
0

t(1 − s)v(s)ds +

t∫
0

(t − s)v(s)ds. (1.20)
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Substituting (1.16) and (1.20) into (1.15) yields

u(t) + α1(t) + (β − α)t1(t) −

1∫
0

t1(t)(1 − s)v(s)ds +

t∫
0

1(t)(t − s)v(s)ds = h(t).

Hence, by using Chasles formula, we obtain

v(t) = h(t)−α1(t)−(β−α)t1(t)−

t∫
0

1(t)(t−s)v(s)ds−t1(t)


t∫

0

(1 − s)v(s)ds +

1∫
t

(1 − s)v(s)ds

 ,
that gives

v(t) = f (t) +

t∫
0

s(1 − t)v(s)ds +

1∫
t

t(1 − s)1(t)v(s)ds, (1.21)

that leads to the Fredholm integral equation:

v(t) = f (t) +

1∫
0

k(t, s)v(s)ds, (1.22)

where

f (t) = h(t) − α1(t) − (β − α)t1(t),

and the kernel k(t, s) is given by

k(t, s) =


s(1 − t)1(t), f or 0 ≤ s ≤ t,

s(1 − s)1(t), f or t ≤ s ≤ 1.

An important conclusion can be made here. For the specific case where u(0) = u(1) = 0

which means that α = β = 0, it is clear that f (t) = h(t) in this case. This means

that the resulting Fredholm equation in (1.22) is homogeneous or inhomogeneous if

the boundary value problem in (1.15) is homogeneous or inhomogeneous respectively

when α = β = 0.
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Type II: We next consider the following boundary value problem:

problem:

u′′(t) + 1(t)u(t) = h(t), 0 ≤ t ≤ 1, (1.23)

with the boundary conditions:

u(0) = α1, u′(1) = β1.

we again set

u′′(t) = v(t), (1.24)

integrating both sides of (1.21) from 0 to t we obtain

t∫
0

u′′(s)ds =

t∫
0

v(s)ds,

that gives

u′(t) = u′(0) +

t∫
0

v(s)ds, (1.25)

where the initial condition u′(0) is not given in a boundary value problem. The condition

u′(0) will be derived later by u′(1) = β1 . Integrating both sides of (1.25) from 0 to t gives

u(t) = u(0) + tu′(0) +

t∫
0

t∫
0

v(s)dsds,

or equivalently

u(t) = α1 + tu′(0) +

t∫
0

(t − s)v(s)ds, (1.26)

obtained upon using the condition u(0) = α1 and by reducing double integral to a single

integral. To determine u′(0), we first differentiate (1.26) with respect to t to get

u′(t) = u′(0) +

t∫
0

v(s)ds, (1.27)
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where by substituting t = 1 into both sides of (1.27) and using the boundary condition

at u′(1) = β1 we find

u′(t) = β1 +

t∫
0

v(s)ds.

This in turn gives

u′(1) = u′(0) +

1∫
0

v(s)ds. (1.28)

Using (1.28) into (1.26) gives

u′(0) = β1 −

1∫
0

v(s)ds, (1.29)

Substituting (1.24) and (1.29) into (1.23) yields

v(t) + α11(t) + β1t1(t) −

1∫
0

t1(s)v(s)ds +

t∫
0

1(t)(t − s)v(s)ds = h(t).

Hence, by using Chasles formula, we obtain

v(t) = h(t) − (α1 + β1t)1(t) + t1(t)


t∫

0

v(s)ds +

1∫
t

v(s)ds

 − 1(t)
t∫

0

(t − s)v(s)ds.

The last equation can be written as

v(t) = f (t) +

t∫
0

s1(t))v(s)ds +

1∫
t

t1(t)v(s)ds,

that leads to the Fredholm integral equation:

u(t) = f (t) +

1∫
0

k(t, s)u(s)ds, (1.30)
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where

f (t) = h(t) − (α1 + β1t)1(t),

and the kernel k(t, s) is given by

k(t, s) =


s1(t), f or 0 ≤ s ≤ t,

t1(t), f or t ≤ s ≤ 1.

An important conclusion can be made here. For the specific case where u(0) = u′(1) = 0

which means that α1 = β1 = 0, it is clear that f (t) = h(t) in this case. This means that

the resulting Fredholm equation in (1.30) is homogeneous or inhomogeneous if the

boundary value problem in (1.23) is homogeneous or inhomogeneous respectively.

1.3 Conversion of Volterra integro-differential equations

to Volterra integral equation

The following Volterra integro-differential equation

u(n)(t) = f (t) + λ

t∫
0

K(t, s)u(s)ds, u(k)(0) = bk, 0 ≤ k ≤ n − 1, (1.31)

can also be solved by converting it to an equivalent Volterra integral equation. It is

obvious that the Volterra integro-differential equation (1.31) involves derivatives at the

left side, and integral at the right side. To perform the conversion process, we need

to integrate both sides n times to convert it to a standard Volterra integral equation.

Firstly, Integration of derivatives: from calculus we observe the following:
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t∫
0

u′(s)ds = u(t) − u(0),

t∫
0

t1∫
0

u′′(s)dsdt1 = u(t) − tu′(0) − u(0),

t∫
0

t1∫
0

t2∫
0

u′′′(s)dsdt1dt2 = u(t) −
1
2

t2u′′(0) − tu′(0) − u(0),

and so on for other derivatives.

Secondly, Reducing multiple integrals to a single integral as follows,

x∫
0

x1∫
0

u(t)dtdx1 =

x∫
0

(x − t)u(t)dt,

x∫
0

x1∫
0

(x − t)u(t)dtdx1 =
1
2

x∫
0

(x − t)2u(t)dt,

x∫
0

x1∫
0

(x − t)2u(t)dtdx1 =
1
3

x∫
0

(x − t)3u(t)dt

x∫
0

x1∫
0

(x − t)3u(t)dtdx1 ==
1
4

x∫
0

(x − t)4u(t)dt,

and so on. This can be generalized in the form

x∫
0

x1∫
0

...

xn−1∫
0

(x − t)u(t)dtdxn−1...dx1 =
1

(n)!

t∫
0

(t − s)nu(t)dt,

The conversion to an equivalent Volterra integral equation will be illustrated by study-

ing the following examples.

Example 1.3.1 Convert the following Volterra integro-differential equation to an Volterra
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integral equation:

u′(x) = 1 +

x∫
0

u(t)dt, u(0) = 0,

integrating both sides from 0 to x, and using the aforementioned formulas we find

u(x) − u(0) = x +

x∫
0

x1∫
0

u(t)dtdx1,

using the initial condition gives the Volterra integral equation

u(x) = x +

x∫
0

(x − t)u(t)dt,

1.4 Existence and uniqueness of the solution

Consider the nonlinear Volterra integro-differential equation (NVIDE)

yn(x) = f (x) +

x∫
0

K(x, t, y(t))ds, x ∈ [0, b], (1.32)

with n initial conditions

u(k)(0) = αk, 0 ≤ k ≤ n − 1,

f and K are given smooth functions.

In this section, the existence and uniqueness of the solution for Eq. (1.32) are presented.

First we give the following theorem from [45].
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Theorem 1.4.1 Consider the following nonlinear Volterra integral equations

y(x) = f (x) +

t∫
0

k(x, t, y(t))dt, (1.33)

Assume that

(i) f (x) is continuous ,

(ii) k(x, t, y(t)) is a continuous function for 0 ≤ t ≤ s ≤ b and −∞ ≤ | y| ≤ ∞,

(iii) the kernel satisfies the Lipschitz condition

|k(x, t, y1) − k(x, t, y2)| ≤ L|y1 − y2|. (1.34)

wherer L is independent of t, t, y1 and y2. Then the Eq. (1.32) has a unique continuous

solution in 0 ≤ t ≤ b.

Now we consider some cases of the integro-differential equations and investigate exis-

tence and uniqueness of the solutions of them.

Corollary 1.4.1

y′(x) = f (x) +

x∫
0

K(x, t, y(t))dt, (1.35)

with initial condition y(0) = α where f and K are continuous functions and K satisfies the

Lipschitz condition

| K(x, t, y1) − K(x, t, y2)| ≤ L| y1 − y2| . (1.36)

Then this problem has a unique continuous solution.

Proof. B, Section 1.3, Equation (1.35) transformed to the following Volterra integral

equation
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y(s) = α +

x∫
0

H(s, y(s))ds, (1.37)

where H(s, y(s)) = f (s) +
s∫

0
K(s, t, y(t))dt,

which is in the form of Eq.(1.33), where obviously α and H(s, y(s)) are continuous.

Therefore, for the existence and uniqueness of a continuous solution of the Eq.(1.35)

it is sufficient to show that Eq. (1.37) satisfies the Lipschitz condition. To this end, we

have

‖H(s, y1(s)) −H(s, y2(s))‖ = ‖

s∫
0

(K(s, t, y1(t)) − K(s, t, y2(t)))dt‖

≤ L1‖y1 − y2‖

s∫
0

dt

≤ L1b‖y1 − y2‖.

So by Theorem (1.4.1), the Eq. (1.35) has a unique continuous solution.

Corollary 1.4.2

y′(x) + cy(x) = f (x) +

x∫
0

K(x, t, y(t))dt, (1.38)

with initial condition y(0) = α ,the f and K are continuous (1.36) then the equation (1.38) with

given condition has a unique continuous solution.

Proof. B, Section 1.3, Equation (1.38) transformed to the following Volterra integral

equation

y(s) = α +

x∫
0

H(s, y(s)), (1.39)
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where H(s, y(s)) = f (s) + −cy(s) +
s∫

0
K(s, t, y(t))dt, similar to the previous corollary we

only investigate the Lipschitz condition. To this end, we have

‖H(s, y1(s)) −H(s, y2(s))‖ = ‖c[y1(s) − y2(s)] +

s∫
0

(K(s, t, y1(t)) − K(s, t, y2(t)))dt‖

≤ |c|‖y1 − y2‖ + L1‖y1 − y2‖

s∫
0

dt

≤ (c + bL1)‖y1 − y2‖.

Again, by Theorem (1.4.1), the Eq. (1.38) has a unique continuous solution.

Corollary 1.4.3

y′′(x) + c1y(x) + c2y(x) = f (x) +

x∫
0

K(x, t, y(t))dt, (1.40)

with initial condition y(0) = α, y′(0) = β ,the f and K are continuous (1.36) Then the mentioned

problem has a unique continuous solution.

Proof. With the same manner, Volterra integro-differential equation(1.40) by converting

it to the following Volterra integral equation

y(s) = α + (β − c1α)z +

x∫
0

H(s, y(s))dx.

where H(s, y(s)) = −cy(s) +
x∫

0

(
f (s) − c2y(s) +

s∫
0

K(s, t, y(t))dt
)

ds, then we obtain
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‖H(s, y1(s)) −H(s, y2(s))‖

= ‖c1[y2(s) − y1(s)] +

x∫
0

c2(y2(s) − y1(s)) +

s∫
0

(K(s, t, y1(t)) − K(s, t, y2(t))dt)

 ds‖

≤ |c1|‖y1 − y2‖ + b|c2|‖y1 − y2‖ + L1‖y1 − y2‖

x∫
0

s∫
0

dtds

≤ (|c1| + b|c2| + b2L1)‖y1 − y2‖.

Similar to previous cases, by Theorem (1.4.1), the Eq. (1.40) has a unique continuous

solution.

The same conclusion can be drawn for the following Volterra integro-differential equa-

tion of order n

yn(x) +

x∫
0

K(x, t, y(t))ds = f (x), x ∈ [0, b],

with conditions yi(0) = αi, i = 0, 1, ...,n − 1, and similar to the previous corollaries we

can convert this problem to an equation of the form (1.32).

1.5 Piecewise polynomial spaces

Let:

Ih = {tn = t(N)
n : 0 = t(N)

0 < t(N)
1 < ... < t(N)

N = T}

denote a mesh (or: grid) on the given interval I = [0,T]. Define the subintervals

δ(N)
n =

[
t(N)
n , t(N)

n+1

]
Definition 1.5.1 For a given mesh Ih the piecewise polynomial space S(d)

µ (Ih) with

µ ≥ 0,−1 ≤ d ≤ µ , is given by

S(d)
µ (Ih) = {υ ∈ Cd(I) : υ|σn ∈ πµ(0 ≤ n ≤ N − 1)}
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Here , πµ denotes the space of (real) polynomials of degree not exceeding µ .

It is readily verified that S(d)
µ (Ih) is a (real) linear vector space whose dimension is given by

dim S(d)
µ (Ih) = N(µ − d) + d + 1

Remark 1.5.1 The particular piecewise polynomial space S(d)
m+d(Ih) corresponding to µ = m + d

with m ≥ 1 and d ≥ −1 will play a central role in the chapter 2 and 3.

Since its dimension is

dim S(d)
m+d(Ih) = Nm + (d + 1), (1.41)

it may be viewed as the ‘natural’ collocation space for the approximation of solutions

to initial value problems for Volterra equations, the choice of the degree of regularity

d will be governed by the number of prescribed initial conditions, while the term Nm

suggests that m (distinct) collocation points are to be placed in each of the N subintervals

σn . Thus, the natural choice of d in (1.41) is as follows:

• For Volterra integral equations (no initial condition) we choose d = −1 ; hence,

the natural collocation space will be S(−1)
m−1(Ih) . Its dimension is Nm.

• For first-order ODEs or Volterra integro-differential equations (one initial condi-

tion) we use d = 0 , and the preferred collocation space is S(0)
m (Ih), with dimension

equal to Nm + 1.

• For ODEs or VIDEs of ferst order with initial conditions the natural collocation

space is S(1)
m+1(Ih), corresponding to the choice d = 1 . The dimension of this space

is Nm + 2.

1.6 Collocation method

A collocation method is based on the idea of approximating the exact solution of a given

integral equation with a suitable function belonging to a chosen finite dimensional space
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such that the approximated solution satisfies the integral equation on a certain subset of

the interval on which the equation has to be solved (called the set of collocation points).

In our thesis, we consider the polynomial spline space as the approximating space.

In order to describe the relevant collocation method for given N, let ΠN be a uniform

partition of a bounded interval I = [0,T] with gride points tn = nh,n = 0, 1, ...,N, where

h is the stepsize. Define the subintervals δn = [tn, tn+1] ,n = 0, ...,N − 1.

So, the real polynomial spline spaces of degrees m,m + k − 1, which will be used in

chapters 2, 3, is defined as follows:

S(−1)
m−1(I,ΠN) = {u : un = u/σn ∈ πm−1,n = 0, ..,N − 1}.

S(0)
m (ΠN) = {u ∈ C(I,R) : un = u/σn ∈ πm,n = 0, ...,N − 1, }.

S(1)
m+1(ΠN) = {u ∈ C1(I,R) : un = u/σn ∈ πm+1,n = 0, ...,N − 1}.

1.7 Review of basic discrete Gronwall-type inequalities

In this section, we give general results of discrete Gronwall-type inequalities. We will

need the following discrete Gronwall-type inequalities.

Lemma 1.7.1 [12] Let {k j}
n
j=0 be a given non-negative sequence and the sequence {εn} satisfies

ε0 ≤ p0 and

εn ≤ p0 +

n−1∑
i=0

kiεi, n ≥ 1,

with p0 ≥ 0. Then εn can be bounded by

εn ≤ p0 exp

 n−1∑
j=0

k j

 , n ≥ 1.

Lemma 1.7.2 [20] Assume that (αn)n≥1 and (qn)n≥1 are given non-negative sequences and the

sequence (εn)n≥1 satisfies
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ε1 ≤ β and

εn ≤ β +

n−1∑
j=1

q j +

n−1∑
j=1

α jε j, n ≥ 2.

Then

εn ≤

β +

n−1∑
j=1

q j

 exp

 n−1∑
j=1

α j

 , n ≥ 2.

Lemma 1.7.3 [1] If { fn}n≥0, {1n}n≥0 and {εn}n≥0 are nonnegative sequences and

εn ≤ fn +

n−1∑
i=0

1iεi, n ≥ 0.

Then,

εn ≤ fn +

n−1∑
i=0

fi1i exp

 n−1∑
k=0

1k

 , n ≥ 0.

The following three lemmas will be used in this section.

Lemma 1.7.4 [32] Assume that the sequence {εn}n≥0 of nonnegative numbers satisfies

εn ≤ Aεn−1 + B
n−1∑
i=0

εi + K, n ≥ 0,

where A, B and K are nonnegative constants, then

εn ≤
ε0

R2 − R1

[
(R2 − 1)Rn

2 + (1 − R1)Rn
1

]
+

K
R2 − R1

[
Rn

2 − Rn
1

]
,

where

R1 =
(
1 + A + B −

√
(1 − A)2 + B2 + B + 2B

)
/2,

R2 =
(
1 + A + B +

√
(1 − A)2 + B2 + 2AB + 2B

)
/2,

(1.42)

therefore, 0 ≤ R1 ≤ 1 ≤ R2.
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Numerical solution of nonlinear
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INTRODUCTION

In this part, we study a numerical method based on iterative and iterative continuous

collocation method for the solution of nonlinear Volterra integral equations of the form,

x(t) = f (t) +

∫ t

0
K(t, s, x(s))ds, t ∈ I = [0,T], (1.43)

where the functions f ,K are sufficiently smooth.

The integral equations are often involved in various fields such as physics and

biology (see, for example [12, 37, 46]), and they also occur as reformulations of other

mathematical problems, such as ordinary differential equations and partial differential

equations (see [37]).

There has been a growing interest in the numerical solution of Equation (1.43) (see,

for example, [3, 4, 23, 24, 62, 29, 30, 36, 46, 49, 48, 54]) such as, Chebyshev approxima-

tion [3], Adomian’s method [4, 46], Taylor polynomial approximations [62], homotopy

perturbation method [29], the series expansion method [30], fixed point method [49],

Haar wavelet method [48], rationalized Haar functions method [54]. Moreover, many

collocation methods for approximating the solutions for Equation (1.43) have been de-

veloped recently (see, [12, 27, 52, 56, 71]) such as Lagrange spline collocation method
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[12], cubic B-spline collocation method [27], quintic B-spline collocation method [52],

Taylor collocation method [56], and sinc-collocation method for Volterra integral equa-

tions is used in [71]. The numerical solution of these equations has a high computational

cost due to the nonlinearity and most of the collocation methods for nonlinear Volterra

integral equations transform Equation (1.43) into a system of nonlinear algebraic equa-

tions.

iterative explicit solution to approximate the solution of nonlinear Volterra integral

equation (1.43). The main advantages of the current collocation method are that it

is direct and there is no algebraic system to be solved, which makes the proposed

algorithm very effective, easy to implement and the calculation cost low.

This part is organized as follows: In chapter 1, we approximate the solution of (1.43)

in the polynomial spline space of degree m − 1 as follows:

S(−1)
m−1(I,ΠN) = {u : un = u|σn ∈ πm−1,n = 0, ..,N − 1}.

In chapter 2, we approximate the solution of (1.43) in the polynomial spline space of

degree m as follows

S(0)
m (ΠN) = {u ∈ C(I,R) : un = u/σn ∈ πm,n = 0, ...,N − 1}.
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Iterative Collocation Method for Nonlinear VIE in the Space S(−1)
m−1(ΠN)

2.1 Introduction

In this chapter, we consider the following nonlinear Volterra integral equations, (1.43)

There are many collocation methods for approximating the solutions for Equation (1.43)

have been developed recently (see, [12, 27, 52, 56, 71]) such as Lagrange spline collo-

cation method [12], cubic B-spline collocation method [27], quintic B-spline collocation

method [52], Taylor collocation method [56], and sinc-collocation method for Volterra

integral equations is used in [71].

The numerical solution of these equations has a high computational cost due to the

nonlinearity and most of the collocation methods for nonlinear Volterra integral equa-

tions transform Equation (1.43) into a system of nonlinear algebraic equations.

The remainder of the work is organized as follows. In section 2, we divide the interval

[0,T] into subintervals, and we approximate the solution of (1.43) in each interval by

using iterative Lagrange polynomials. Global convergence is established in section 3.

Numerical examples are provided in section 4. In the last section, we give a conclusion.

2.2 Description of the method

Let ΠN be a uniform partition of the interval I = [0,T] defined by tn = nh, n =

0, ...,N− 1, where the stepsize is given by
T
N

= h . Let the collocation parameters be 0 ≤

c1 < ...... < cm ≤ 1 and the collocation points be tn, j = tn + c jh, j = 1, ...,m,n = 0, ...,N − 1.

Define the subintervals σn = [tn, tn+1], and σN−1 = [tN−1, tN].

Moreover, denote by πm the set of all real polynomials of degree not exceeding m.

We define the real polynomial spline space of degree m as follows:

S(−1)
m−1(I,ΠN) = {u : un = u|σn ∈ πm−1,n = 0, ..,N − 1}.
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This is the space of piecewise polynomials of degree at most m − 1. Its dimension is

Nm. It holds for any x ∈ Cm([0,T]) that

x(tn + sh) =

m∑
j=1

L j(s)x(tn, j) + εn(s), εn(s) = hm xm(ζn(s))
m!

m∏
j=1

(s − c j), (2.1)

where s ∈ [0, 1] and L j(v) =
m∏

l, j

v − cl

c j − cl
are the Lagrange polynomials associate with the

parameters c j, j = 1, ...,m.

Inserting (2.1) into(1.43), we obtain for each j = 1, ...,m, ,n = 0, ...,N − 1

x(tn, j) = f (tn, j) + h
n−1∑
p=0

m∑
v=1

bvK(tn, j, tpv, x(tpv)) + h
m∑

v=1

a j,vK(tn, j, tn,v, x(tn,v))

+ o(hm),

(2.2)

such that a j,v =
∫ c j

0
Lv(η)dη and bv =

∫ 1

0
Lv(η)dη.

It holds for any u ∈ S−1
m−1(I,ΠN) that

u(tn + sh) =

m∑
j=1

L j(s)u(tn, j), s ∈ [0, 1]. (2.3)

Now, we approximate the exact solution x by u ∈ S−1
m−1(I,ΠN) such that u(tn, j) satisfy the

following nonlinear system,

u(tn, j) = f (tn, j) + h
n−1∑
p=0

m∑
v=1

bvK(tn, j, tpv,u(tpv)) + h
m∑

v=1

a j,vK(tn, j, tn,v,u(tn,v)), (2.4)

for j = 1, ...,m, n = 0, ...,N − 1. Since the above system is nonlinear, we will use an

iterative collocation solution uq
∈ S−1

m−1(I,ΠN), q ∈ N, to approximate the exact solution

of (1.43) such that

uq(tn + sh) =

m∑
j=1

L j(s)uq(tn, j), s ∈ [0, 1], (2.5)
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where the coefficients uq(tn, j) are given by the following formula:

uq(tn, j) = f (tn, j) + h
n−1∑
p=0

m∑
v=1

bvK(tn, j, tpv,uq(tpv)) + h
m∑

v=1

a j,vK(tn, j, tn,v,uq−1(tn,v)), (2.6)

such that the initial values u0(tn, j) ∈ J (J is a bounded interval).

The above formula is explicit and the approximate solution uq is given without needed

to solve any algebraic system.

In the next section, we will prove the convergence of the approximate solution uq to the

exact solution x of (1.43), moreover, the order of convergence is m for all q ≥ m.

2.3 Convergence analysis

In this section, we assume that the functions K satisfy the Lipschitz condition with

respect to the third variable: there exist L1 ≥ 0 such that

|K(t, s, y1) − K(t, s, y2)| ≤ L|y1 − y2|.

The following result gives the existence and the uniqueness of a solution for the non-

linear system (2.4).

Lemma 2.3.1 For sufficiently small h, the nonlinear system (2.4) has a unique solution u ∈

S−1
m−1(I,ΠN). Moreover, the function u is bounded.

Proof. Claim 1. The nonlinear system (2.4) has a unique solution in S−1
m−1(I,ΠN).

We will use the induction combined with the Banach fixed point theorem.

(i) On the interval σ0 = [t0, t1], the nonlinear system (2.4) becomes

u(t0, j) = f (t0, j) + h
m∑

v=1

a j,vK(t0, j, t0,v,u(t0,v)), j = 1, ...,m.
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We consider the operator Ψ defined by:

Ψ : Rm
−→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),

such that for j = 1, ...,m, we have

Ψ j(x) = f (t0, j) + h
m∑

v=1

a j,vK(t0, j, t0,v, xv).

Hence, for all x, y ∈ Rm, we have

‖Ψ(x) −Ψ(y)‖≤ hmaL‖x − y‖.

where a = max{|a j,v|, j = 1, ...,m, v = 1, ...,m}.

Since hmaL < 1 for sufficiently small h, then by Banach fixed point theorem, the

nonlinear system (2.4) has a unique solution u on the interval σ0.

(ii) Suppose that u exists and unique on the intervals σi, i = 0, ...,n − 1 for n ≥ 1 and

we show that u exists and unique on the interval σn.

On the interval σn, the nonlinear system (2.4) becomes

u(tn, j) = F(tn, j) + h
m∑

v=1

a j,vK(tn, j, tn,v,u(tn,v)), j = 1, ...,m (2.7)

where, F(tn, j) = f (tn, j) + h
n−1∑
p=0

m∑
v=1

bvK(tn, j, tpv,u(tpv)).

We consider the operator Ψ defined by:

Ψ : Rm
−→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),
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such that for j = 1, ...,m, we have

Ψ j(x) = F(tn, j) + h
m∑

v=1

a j,vK(tn, j, tn,v, xv).

Hence, for all x, y ∈ Rm, we have

‖Ψ(x) −Ψ(y)‖≤ hmaL‖x − y‖

Since hmaL < 1 for sufficiently small h, then by Banach fixed point theorem, the

nonlinear system (2.7) has a unique solution u on the interval σn.

Claim 2. The solution u is bounded.

We have, from (2.4), for n = 0, ...,N − 1 and j = 1, ...,m,

∣∣∣u(tn, j)
∣∣∣ ≤| f (tn, j)| + h

n−1∑
p=0

m∑
v=1

|bv||K(tn, j, tpv, 0))| + h
m∑

v=1

|a j,v||K(tn, j, tn,v, 0))|

+ hL
n−1∑
p=0

m∑
v=1

|bv||u(tpv)| + hL
m∑

v=1

|a j,v||u(tn,v)|

≤‖ f ‖ + hbmKT + TmaK + hLb
n−1∑
p=0

m∑
v=1

|u(tpv)| + hLa
m∑

v=1

|u(tn,v)|,

(2.8)

where ‖ f ‖ = max{| f (t)|, t ∈ I}, b = max{|b j|, j = 1, ...,m},

a = max{|a j,v|, j = 1, ...,m, v = 1, ...,m}.

Now, we consider the sequence yn = max{u(tn,p), p = 1, ....,m} for n = 0, ...,N − 1.

Then, from (2.8), yn satisfies for n = 0, ...,N − 1,

yn ≤ ‖ f ‖ + hbmKT + TmaK︸                     ︷︷                     ︸
α

+hLbm
n−1∑
p=0

yp + hLamyn,
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Hence, for h <
1

Lam
, we have for all h ∈ (0, h]

yn ≤
α

1 − hLam
+

hLbm

1 − hLam

n−1∑
p=0

yp.

We deduce, by Lemma (1.7.1), that for all n = 0, ...,N − 1

yn ≤
α

1 − hLam
exp

(
TLbm

1 − hLam

)
.

Thus, by using (2.3), we deduce that u is bounded.

The following result gives the convergence of the approximate solution u to the exact

solution x.

Theorem 2.3.1 Let f ,K be m times continuously differentiable on their respective domains.

Then for sufficiently small h, the collocation solution u converges to the exact solution x, and

the resulting error function e := x − u satisfies:

‖e‖ ≤ Chm,

where C is a finite constant independent of h.

Proof. We have, from (2.4) and (2.2), for all n = 0, ...,N − 1 and j = 1, ...,m

|e(tn, j)| ≤hL
n−1∑
p=0

m∑
v=1

|bv|
∣∣∣e(tpv)

∣∣∣ + hL
m∑

v=1

a j,v

∣∣∣e(tn,v)
∣∣∣ + αhm

≤hLb
n−1∑
p=0

m∑
v=1

∣∣∣e(tpv)
∣∣∣ + hLa

m∑
v=1

∣∣∣e(tn,v)
∣∣∣ + αhm,

(2.9)

where α is a positive number.

We consider the sequence en = max{|e(tn,v)|, v = 1, ....,m} for n = 0, ...,N − 1.
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Then, from (2.9), en satisfies for n = 0, ...,N − 1,

en ≤ hLbm
n−1∑
p=0

m∑
v=1

ep + hLamen + αhm,

Hence, for h <
1

Lam
, we have for all h ∈ (0, h]

en ≤
α

1 − hLam
hm +

hLbm

1 − hLam

n−1∑
p=0

ep.

Then, by Lemma (1.7.1), for all n = 0, ...,N − 1

en ≤
α

1 − hLam
hm exp

(
TLbm

1 − hLam

)
.

Therefore, by using (2.1) and (2.3), we obtain

‖e‖ ≤ mL max{en,n = 0, ...,N − 1} + αhm

≤ mL
α

1 − hLam
exp

(
TLbm

1 − hLam

)
hm + αhm,

where L = max{|L j(s)|, j = 1, ...,m, s ∈ [0, 1]}.

Thus, the proof is completed by taking C = mL α
1−hLam

exp
(

TLbm
1−hLam

)
+ α.

The following result gives the convergence of the iterative solution uq to the exact

solution x.

Theorem 2.3.2 Consider the iterative collocation solution uq, q ≥ 1 defined by (2.5) and (2.6),

then for any initial condition u0(tn, j) ∈ J, the iterative collocation solution uq, q ≥ 1 converges

to the exact solution x. Moreover, for sufficiently small h, the following error estimate holds

‖uq
− x‖ ≤ dβqhq + Chm,

where d, β and C are finite constants independent of h.
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Proof. We define the error eq and ξq by eq(t) = uq(t) − x(t) and ξq = uq(t) − u(t), where u

is defined by lemma (2.3.1).

We have, from (2.4) and (2.6), for all n = 0, ...,N − 1 and j = 1, ...,m

|ξq(tn, j)| ≤ hLb
n−1∑
p=0

m∑
v=1

∣∣∣ξq(tpv)
∣∣∣ + hLa

m∑
v=1

∣∣∣ξq−1(tn,v)
∣∣∣ .

Now, for each fixed q ≥ 1, we consider the sequence ξq
n = max{

∣∣∣ξq(tn,v)
∣∣∣ v = 1....m} for

n = 0, ...,N − 1, it follows that,

ξq
n ≤ hLbm

n−1∑
p=0

ξq
p + hLamξq−1

n .

Hence, by Lemma (1.7.3), for all n = 0, ...,N − 1

ξq
n ≤ hLamξq−1

n + h2L2abm2
n−1∑
p=0

ξq−1
p exp(TLam). (2.10)

We consider the sequence ηq = max{ξq
n,n = 0, ....,N − 1} for q ≥ 1.

Then, from (2.10), ηq satisfies,

ηq
≤ hLamηq−1 + ThL2abm2ηq−1 exp(TLam)

= (Lam + TL2abm2 exp(TLam))︸                              ︷︷                              ︸
β

hηq−1

≤ β2h2ηq−2
≤ ... ≤ βqhqη0.

Since, u0(tn, j) ∈ J (bounded interval) and u is bounded by lemma (2.3.1), then there

exists δ > 0 such that η0 < δ, which implies that, for all q ≥ 1

ηq
≤ δβqhq.
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Therefore, by using (2.3) and (2.5), we obtain

‖ξq
‖ ≤ mLηq

≤ mLδβqhq,

Hence, by theorem (2.3.1), we deduce that

‖eq
‖ ≤ ‖ξq

‖ + ‖u − x‖ ≤ dβqhq + Chm.

Thus, the proof is completed.

2.4 Numerical examples

To illustrate the theoretical results obtained in the previous section, we present the

following examples with T = 1. All the exact solutions x are already known. In each

example, we calculate the error between x and the iterative collocation solution um.

We compare our results by other methods in [66, 27, 36, 4, 52, 49].

The results in these examples confirm the theoretical results; moreover, the results

obtained by the present method is very superior to that obtained by the methods in

[66, 27, 36, 4, 52, 49].

Example 2.4.1 ([66]) We consider the following linear Volterra integral equation of second

kind

x(t) = (1 + λt − λt2)et
− λt + λ

∫ t

0
tsx(s)ds, t ∈ [0, 1],

where λ = 1
10 and the exact solution is x(t) = et.

The absolute errors for N = 4 and m = q = 5 and m = q = 6at t = 0.25, 0.5, 0.75, 1 are

compared with the absolute error of Iterative method [66] in Table 2.1 .
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Table 2.1: Comparison of the absolute errors of Example 2.4.1

t Iterative method [66] Present method
e5 e6 m = 5 m = 6

0.25 7.85 E −5 7.85 E −5 9.63 E −8 3.43 E −8
0.5 3.72 E −6 3.72 E −6 1.14 E −7 9.29 E −9
0.75 1.79 E −5 1.79 E −5 1.25 E −7 4.61 E −9
1.0 2.17 E −6 2.17 E −6 8.38 E −7 1.25 E −8

Example 2.4.2 ([27, 36]) Consider the following nonlinear Volterra integral equation

x(t) = 1 + (sin(t))2
−

∫ t

0
3 sin(t − s)(x(s))2ds, t ∈ [0, 1],

where u(x) = cos(x) is the exact solution. We used the new method and obtained the results

shown in table 2.2.

The absolute errors for N = 10, 20 and m = 4 at t = 0, 0.1, ..., 1 are displayed in Table 2.2 .

The numerical results of the present method are considerable accurate in comparison with the

numerical results obtained by [27, 36].

Table 2.2: Comparison of the absolute errors of Example 2.4.2

t Method in [27] Method in [36] Our method
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

0.1 1.01 E −5 1.59 E −6 1.24 E −5 2.54 E −8 9.82 E −8 5.57 E −9
0.2 2.48 E −5 3.26 E −6 1.62 E −6 3.44 E −7 1.41 E −7 3.34 E −9
0.3 3.65 E −5 4.72 E −6 2.03 E −4 9.19 E −7 2.04 E −7 1.47 E −8
0.4 4.61 E −5 5.87 E −6 2.07 E −5 1.44 E −6 2.72 E −7 1.60 E −8
0.5 5.26 E −5 6.63 E −6 3.84 E −5 1.88 E −6 3.56 E −7 2.28 E −8
0.6 5.59 E −5 6.98 E −6 5.11 E −5 2.18 E −6 4.34 E −7 2.67 E −8
0.7 5.58 E −5 6.92 E −6 7.22 E −5 1.83 E −6 5.11 E −7 3.46 E −8
0.8 5.28 E −5 6.47 E −6 6.43 E −5 6.41 E −6 5.62 E −7 3.26 E −8
0.9 4.65 E −5 5.70 E −6 1.96 E −5 1.00 E −4 6.02 E −7 4.50 E −8
1 3.97 E −5 4.71 E −6 6.36 E −4 9.25 E −4 4.66 E −7 2.43 E −8
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Example 2.4.3 ([4, 52, 49]) Consider the following linear Volterra integral equation with exact

solution y(t) = 1 − sinh(t):

x(t) = 1 − t −
t2

2

∫ t

0
(t − s)x(s)ds, t ∈ [0, 1].

The absolute errors for m = 4 and N = 20 at t = 0, 0.2, ..., 1 are displayed in Table 2.3. The

numerical results obtained here are compared in Table 2.3 with the numerical results obtained

by using the methods in [4, 52].

It is seen from Table 2.3 that the results obtained by the present method is very superior to that

obtained by the methods in [4, 52].

Table 2.3: Comparison of the absolute errors of Example 2. 4.3

t Our method Method in [4] Method in [52]
N = 20 N = 20 N = 20

0.0 1.00 E −9 0 1.98 E −14
0.1 4.80 E −10 5.63 E −6 1.21 E −7
0.2 1.85 E −9 2.20 E −5 2.35 E −7
0.3 2.05 E −9 4.82 E −5 3.54 E −7
0.4 1.69 E −9 8.33 E −5 4.77 E −7
0.5 2.90 E −9 1.26 E −4 6.05 E −7
0.6 4.05 E −9 1.77 E −4 7.39 E −7
0.7 4.56 E −9 2.34 E −4 8.80 E −7
0.8 5.41 E −9 2.97 E −4 1.03 E −6
0.9 6.89 E −9 3.65 E −4 1.19 E −6
1 1.55 E −8 4.38 E −4 1.36 E −6
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Example 2.4.4 ([49]) We consider the following nonlinear Volterra integral equation

x(t) =
t

et2 +

∫ t

0
2tse−x2(s)ds, t ∈ [0, 1],

where the exact solution is x(t) = t.

The absolute errors for N = 20 and m = q = 10 at t = 0, 0.2, ..., 1 are compared with the

absolute error of the method in [49] in Table 2.4 .

Table 2.4: Comparison of the absolute errors of Example 2. 4.4

t Method in [66] Our method
N = 20 N = 20

0 0 2.58 E −9
0.2 1.49 E −8 2.57 E −8
0.4 7.74 E −7 2.61 E −7
0.6 9.36 E −6 4.54 E −7
0.8 4.58 E −5 1.51 E −6
1 1.29 E −4 1.60 E −6
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Example 2.4.5 ([49]) We consider the following nonlinear Volterra integral equation

x(t) = t cos(t) +

∫ t

0
t sin(x(s))ds, t ∈ [0, 1],

where the exact solution is x(t) = t.

The absolute errors for N = 25 and m = q = 4 at t = 0.001, 0.2, 0.4, 0.6, 0.8, 1 are compared

with the absolute error of the method in [49] in Table 2.4.5 . It is seen from Table 2.5 that the

results obtained by the present method is very superior to that obtained by the method in [49].

Table 2.5: Comparison of the absolute errors of Example 2. 4.5

t Method in [49] Our method
N = 25 N = 25

0.001 4.65 E −10 1.75 E −11
0.2 3.53 E −6 3.00 E −10
0.4 5.81 E −6 4.00 E −10
0.6 7.74 E −7 9.00 E −10
0.8 1.20 E −5 4.00 E −10
1 3.98 E −5 3.68 E −8

2.5 Conclusion

n this chapter, we have proposed a iterative collocation method based on the use of

Lagrange polynomials to approximate the solution of the volterra integral equation

(1.43) in the spline space S(−1)
m−1(I,ΠN) We have shown that the numerical solution is con-

vergent. This method is easy to implement, and the coefficients of the approximation

solution are determined by iterative formulas without the need to solve any system of

algebraic equations. The numerical examples introduced have shown that the method

is convergent with a good accuracy
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3.1 Introduction

In this chapter, we consider the following nonlinear Volterra integral equations, (1.43)

where the functions f ,K are sufficiently smooth.

There are many collocation methods for approximating the solutions for Equation

(1.43) have been developed recently (see,[27, 36, 52, 4, 49])

such as cubic B-spline collocation method [27],the Adomian decomposition method

for nonlinear Volterra integral equations [36] , quintic B-spline collocation method [52],

and Adomian decomposition method for linear Volterra integral equations is used in

[4], Fixed point method for solving nonlinear Volterra-Hammerstein integral equation

[49].

This chapter is concerned with the iterative continuous collocation method to obtain

an approximate solution for Volterra integral, our method presents some advantages:

• It provides a global approximation of the solution

• Without needed to solve any algebraic system

• High order of convergence

• Provides an explicit numerical solution and easy to be implemented.

This chapter is organized as follows: In section 2, we divide the interval [0,T]

into subintervals, and we approximate the solution of (1.43) in each interval by using

iterative Lagrange polynomials. Global convergence is established in section 3. Finally,

we report our numerical results and demonstrate the efficiency and accuracy of the

proposed numerical scheme by considering some numerical examples in section 4.
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3.2 Description of the method

Let ΠN be a uniform partition of the interval I = [0,T] defined by tn = nh,n = 0, . . . ,N−1,

where the stepsize is given by
T
N

= h . Let the collocation parameters be 0 ≤ c1 < . . . <

cm ≤ 1 and the collocation points be tn, j = tn + c jh, j = 1, . . . ,m,n = 0, . . . ,N − 1. Define

the subintervals σn = [tn, tn+1].

Moreover, denote by πm the set of all real polynomials of degree not exceeding m.

We define the real polynomial spline space of degree m as follows

S(0)
m (ΠN) = {u ∈ C(I,R) : un = u/σn ∈ πm,n = 0, . . . ,N − 1}.

It holds for any x ∈ Cm+1([0,T]) that

x(tn + sh) = L0(s)x(tn) +

m∑
j=1

L j(s)x(tn, j) + hm+1 x(m+1)(ζn(s))
(m + 1)!

s
m∏

j=1

(s − c j), (3.1)

where s ∈ [0, 1], L0(v) = (−1)m
m∏

l=1

v − cl

cl
and L j(v) = v

c j

m∏
l, j

v − cl

c j − cl
, j = 1, . . . ,m are the

Lagrange polynomials associated with the parameters c j, j = 1, . . . ,m.

Inserting (3.1) for the function s 7−→ K(t, s, x(s))ds into (1.43), we obtain for each

j = 1, . . . ,m,n = 0, . . . ,N − 1

x(tn, j) = f (tn, j) + h
n−1∑
p=0

b0K(tn, j, tp, x(tp)) + h
n−1∑
p=0

m∑
v=1

bvK(tn, j, tp,v, x(tp,v))

+ ha j,0K(tn, j, tn, x(tn)) + h
m∑

v=1

a j,vK(tn, j, tn,v, x(tn,v)) + o(hm+1), (3.2)

such that a j,v =
∫ c j

0
Lv(η)dη and bv =

∫ 1

0
Lv(η)dη, v = 0, . . . ,m.

It holds for any u ∈ S0
m(I,ΠN) that

un(tn + sh) = L0(s)un−1(tn) +

m∑
j=1

L j(s)un(tn, j), s ∈ [0, 1]. (3.3)
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Now, we approximate the exact solution x by u ∈ S0
m(I,ΠN) such that u(tn, j) satisfies the

following nonlinear system,

un(tn, j) = f (tn, j) + h
n−1∑
p=0

b0K(tn, j, tp,up(tp)) + h
n−1∑
p=0

m∑
v=1

bvK(tn, j, tp,v,up(tp,v))

+ ha j,0K(tn, j, tn,un−1(tn)) + h
m∑

v=1

a j,vK(tn, j, tn,v,un(tn,v)), (3.4)

for j = 1, . . . ,m, n = 0, . . . ,N − 1, where u−1(t0) = x(0) = f (0).

Since the above system is nonlinear, we will use an iterative collocation solution

uq
∈ S0

m(I,ΠN), q ∈N, to approximate the exact solution of (1.43) such that

uq
n(tn + sh) = L0(s)uq

n−1(tn) +

m∑
j=1

L j(s)uq
n(tn, j), s ∈ [0, 1], (3.5)

where the coefficients uq
n(tn, j) are given by the following formula:

uq
n(tn, j) = f (tn, j) + h

n−1∑
p=0

b0K(tn, j, tp,u
q
p(tp)) + h

n−1∑
p=0

m∑
v=1

bvK(tn, j, tp,v,u
q
p(tp,v))

+ ha j,0K(tn, j, tn,u
q
n−1(tn)) + h

m∑
v=1

a j,vK(tn, j, tn,v,u
q−1
n (tn,v)), (3.6)

such that uq
−1(t0) = f (0) for all q ∈ N and the initial values u0(tn, j) ∈ J (J is a bounded

interval).

The above formula is explicit and the approximate solution uq is obtained without

solving any algebraic system. The complexity of the proposed algorithm can be mea-

sured in terms of how many times the function K must be evaluated at each collocation

point.

From formula (3.5) it follows that the number of such evaluations is O(mn) for each

iteration. Since the optimal number of iterations is q = m + 1 (as it will be shown in

the next section), we conclude that the total number of evaluations is O(m2 n), which

makes this method competitive, in comparison with other methods where a nonlinear
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system of equations is solved by an iterative algorithm.

In the next section, we prove the convergence of the approximate solution uq to the

exact solution x of (1.43) is of order m for all q ≥ m.

3.3 Convergence analysis

In this section, we assume that the function K satisfies the Lipschitz condition with

respect to the third variable: there exist L ≥ 0 such that

|K(t, s, y1) − K(t, s, y2)| ≤ L|y1 − y2|.

The following result gives the existence and the uniqueness of a solution for the

nonlinear system (3.4).

Lemma 3.3.1 The nonlinear system (3.4) has a unique solution u ∈ S0
m(I,ΠN) for sufficiently

small h.

Proof. We will use the induction combined with the Banach fixed point theorem.

(i) On the interval σ0 = [t0, t1], the nonlinear system (3.4) becomes

u0(t0, j) = f (t0, j) + ha j,0K(t0, j, t0, f (0)) + h
m∑

v=1

a j,vK(t0, j, t0,v,u0(t0,v)), j = 1, . . . ,m.

We consider the operator Ψ defined by

Ψ : Rm
−→ Rm

x = (x1, . . . , xm) 7−→ Ψ(x) = (Ψ1(x), . . . ,Ψm(x)),

55



Iterative Continuous Collocation Method for nonlinear VIE in the Space S(0)
m (ΠN)

such that for j = 1, . . . ,m, we have

Ψ j(x) = f (t0, j) + ha j,0K(t0, j, t0, f (0)) + h
m∑

v=1

a j,vK(t0, j, t0,v, xv).

Hence, for all x, y ∈ Rm, we have

‖Ψ(x) −Ψ(y)‖≤ hmaL‖x − y‖,

where a = max{|a j,v|, j = 1, . . . ,m, v = 0, . . . ,m}.

Since hmaL < 1 for sufficiently small h, then by the Banach fixed point theorem,

the nonlinear system (3.4) has a unique solution u0 on σ0.

(ii) Suppose that ui exists and unique on the intervals σi, i = 0, . . . ,n − 1 for n ≥ 1, we

show that un exists and is unique on the interval σn.

On the interval σn, the nonlinear system (3.4) becomes

un(tn, j) = F(tn, j) + h
m∑

v=1

a j,vK(tn, j, tn,v,un(tn,v)), (3.7)

where, F(tn, j) = f (tn, j) + h
n−1∑
p=0

b0K(tn, j, tp,up(tp)) +

h
n−1∑
p=0

m∑
v=1

bvK(tn, j, tp,v,up(tp,v)) + ha j,0K(tn, j, tn,un−1(tn)).

We consider the operator Ψ defined by:

Ψ : Rm
−→ Rm

x = (x1, . . . , xm) 7−→ Ψ(x) = (Ψ1(x), . . . ,Ψm(x)),

such that for j = 1, . . . ,m

Ψ j(x) = F(tn, j) + h
m∑

v=1

a j,vK(tn, j, tn,v, xv).
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Hence, for all x, y ∈ Rm

‖Ψ(x) −Ψ(y)‖≤ hmaL‖x − y‖

Since hmaL < 1 for sufficiently small h, then by the Banach fixed point theorem,

the nonlinear system (3.7) has a unique solution un on σn.

The following result gives the convergence of the approximate solution u to the exact

solution x.

Theorem 3.3.1 Let f ,K be m+1 times continuously differentiable on their respective domains.

If −1 < R(∞) = (−1)m
m∏

l=1

1 − cl

cl
< 1, then, for sufficiently small h, the collocation solution u

converges to the exact solution x, and the resulting error function e := x − u satisfies:

‖e‖ ≤ Chm+1,

where C is a finite constant independent of h.

Proof. Define the error e on σn by e(t) = en(t) = x(t) − un(t) for all n ∈ {0, 1, . . . ,N − 1}.

We have, from (3.4) and (3.2), for all n = 0, . . . ,N − 1 and j = 1, . . . ,m

|en(tn, j)| ≤ hbL
n−1∑
p=0

|ep(tp)| + hbL
n−1∑
p=0

m∑
v=1

|ep(tp,v)| + haL|en−1(tn)|

+ haL
m∑

v=1

|en(tn,v)| + αhm+1, (3.8)

where α is a positive number and e−1(t0) = 0.

We consider the sequence εn =
m∑

v=1
|en(tn,v)| for n = 0, . . . ,N − 1.
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Then, from (3.8), εn satisfies for n = 0, . . . ,N − 1

εn ≤ hbLm
n−1∑
p=0

|ep(tp)| + hbLm
n−1∑
p=0

εp + haLm|en−1(tn)| + haLmεn + αmhm+1

≤ 2hbLm
n−1∑
p=0

‖ep‖ + hbLm
n−1∑
p=0

εp + haLmεn + αmhm+1.

Hence, for h <
1

Lam
and h ∈ (0, h], we have

εn ≤
2bLm

1 − Lamh︸     ︷︷     ︸
α1

h
n−1∑
p=0

‖ep‖ +
bLm

1 − Lamh︸     ︷︷     ︸
α2

h
n−1∑
p=0

εp +
αm

1 − Lamh︸     ︷︷     ︸
α3

hm+1.

Then, by Lemma 1.7.2, for all n = 0, . . . ,N − 1

εn ≤ α1 exp(Tα2)︸        ︷︷        ︸
α4

h
n−1∑
p=0

‖ep‖ + α3 exp(Tα2)︸        ︷︷        ︸
α5

hm+1.

Therefore, by using (3.1) and (3.3), we obtain

‖en‖ ≤ |R(∞)|‖en−1‖ + ρεn + βhm+1

≤ |R(∞)|‖en−1‖ + ρα4︸︷︷︸
α6

h
n−1∑
p=0

‖ep‖ + (ρα5 + β)︸    ︷︷    ︸
α7

hm+1.

where ρ = max{|L j(t)|, t ∈ [0, 1]; j = 1, . . . ,m}.

Hence by Lemma 1.7.4, we obtain for all n = 0, . . . ,N − 1

‖en‖ ≤
‖e0‖

R2 − R1
[(R2 − 1)Rn

2 + (1 − R1)Rn
1] +

α7hm+1

R2 − R1
[Rn

2 − Rn
1]

≤
‖e0‖

R2 − R1
[(R2 − 1)R

T
h
2 + 1] +

α7hm+1

R2 − R1
[R

T
h
2 ]

≤

( 1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ]

)
α7hm+1,
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where R1,R2 are defined by (1.42) such that A = |R(∞)|,B = α6h,K = α7hm+1.

Since, lim
h−→0

( 1
R2−R1

[(R2 − 1)R
T
h
2 + 1] + 1

R2−R1
[R

T
h
2 ]) = 1

1−|R(∞)| exp( 2Tα6
1−|R(∞)| ) < +∞.

Then, there exists γ > 0 such that for all h ∈ (0, h].

1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ] ≤ γ,

Thus, the proof is completed by taking C = α7γ.

The following result gives the convergence of the iterative solution uq to the exact

solution x.

Theorem 3.3.2 Consider the iterative collocation solution uq, q ≥ 1 defined by (3.5) and (3.6),

if −1 < R(∞) = (−1)m
m∏

l=1

1 − cl

cl
< 1, then for any initial condition u0(tn, j) ∈ J, the iterative

collocation solution uq, q ≥ 1 converges to the exact solution x for sufficiently small h. Moreover,

the following error estimate holds

‖uq
− x‖ ≤ dβqhq + Chm+1

where d, β and C are finite constants independent of h.

Proof. We define the errors eq and ξq by eq(t) = eq
n(t) = uq

n(t) − x(t) and

ξq = ξq
n = uq

n(t) − un(t) on σn,n = 0, . . . ,N − 1, where u is defined by Lemma 3.3.1.

We have, from (3.4) and (3.6), for all n = 0, . . . ,N − 1 and j = 1, . . . ,m

|ξq
n(tn, j)| ≤ hbL

n−1∑
p=0

|ξq
p(tp)| + hbL

n−1∑
p=0

m∑
v=1

|ξq
p(tp,v)| + haL|ξq

n−1(tn)|

+ haL
m∑

v=1

|ξq−1
n (tn,v)|.

Now, for each fixed q ≥ 1, we consider the sequence
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ηq
n = max{|ξq

n(tn,v)|, v = 1, . . . ,m} for n = 0, . . . ,N − 1, it follows that

ηq
n ≤ hbL

n−1∑
p=0

|ξq
p(tp)| + hbLm

n−1∑
p=0

ηq
p + haL|ξq

n−1(tn)| + haLmηq−1
n

≤ 2hbL
n−1∑
p=0

‖ξq
p‖ + hbLm

n−1∑
p=0

ηq
p + haLmηq−1

n .

Hence, by Lemma 1.7.3, for all n = 0, . . . ,N − 1

ηq
n ≤ 2hbL

n−1∑
p=0

‖ξq
p‖ + haLmηq−1

n + exp(TLbm)ab(hLm)2
n−1∑
p=0

ηq−1
p

+ 2 exp(TLbm)Tm(bL)2h
n−1∑
p=0

‖ξq
p‖. (3.9)

We consider the sequence ηq = max{ηq
n,n = 0, . . . ,N − 1} for q ≥ 1.

Then, from (3.9), ηq satisfies

ηq
n ≤ 2(bL + exp(TLbm)Tm(bL)2)︸                             ︷︷                             ︸

α1

h
n−1∑
p=0

‖ξq
p‖ + α2hηq−1.

where α2 = (aLm + exp(TLbm)abT(Lm)2).

Therefore, by using (3.3) and (3.5), we obtain

‖ξq
n‖ ≤ |R(∞)|‖ξq

n−1‖ + ρmηq
n

≤ |R(∞)|‖ξq
n−1‖ + ρmα1h

n−1∑
p=0

‖ξq
p‖ + ρmα2hηq−1.
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Hence by Lemma 1.7.4, we obtain for all n = 0, . . . ,N − 1

‖ξq
n‖ ≤

‖ξq
0‖

R2 − R1
[(R2 − 1)Rn

2 + (1 − R1)Rn
1] +

ρmα2hηq−1

R2 − R1
[Rn

2 − Rn
1]

≤
‖ξq

0‖

R2 − R1
[(R2 − 1)R

T
h
2 + 1] +

ρmα2hηq−1

R2 − R1
[R

T
h
2 ]

≤

( 1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ]

)
ρmα2hηq−1, (3.10)

where R1 and R2 are defined by (1.42) such that A = |R(∞)|,B = ρmα1h,

K = ρmα2hηq−1.

Since, lim
h−→0

( 1
R2−R1

[(R2 − 1)R
T
h
2 + 1] + 1

R2−R1
[R

T
h
2 ]) =

exp(
2Tρmα1
1−|R(∞)| )

1−|R(∞)| < +∞.

Then, there exists γ > 0 such that for all h ∈ (0, h]

1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ] ≤ γ.

It follows, from (3.10), that for all n = 0, . . . ,N − 1

‖ξq
n‖ ≤ γρmα2hηq−1

≤ γρmα2h‖ξq−1
‖,

which implies, for all q ≥ 1, that

‖ξq
‖ ≤ γρmα2h‖ξq−1

‖ ≤ . . . ≤ (γρmα2)qhq
‖ξ0
‖.

Since, u0
−1(t0) = f (0),u0(tn, j) ∈ J (bounded interval), then by (3.3) the function

u0 is bounded.

Hence there exists d > 0 such that ‖ξ0
‖ = ‖u0

− u‖ ≤ ‖u0
− x‖ + ‖x − u‖ < d.

Which implies that, for all q ≥ 1

‖ξq
‖ ≤ d(γρmα2︸ ︷︷ ︸

β

)qhq.
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Hence, by theorem 3.3.1, we deduce that

‖eq
‖ ≤ ‖ξq

‖ + ‖u − x‖ ≤ dβqhq + Chm+1.

Thus, the proof is completed.

Remark 3.3.1 From the error estimate in Theorem 3.3.2 it follows that the optimal number of

iterations is q = m + 1. Actually, with m + 1 iterations the total error has the order of O(hm+1),

which will not be improved if more iterations are performed.

3.4 Numerical examples

In order to test the applicability of the presented method, we consider the following

examples with T = 1. These examples have been solved with various values of N,m

and q. In each example, we calculate the error between x and the iterative collocation

solution uq.

The absolute errors at some particular points are given to compare our solutions

with the solutions obtained by [4, 27, 36, 49, 52].

These results of these numerical examples are in agreement with the theory pre-

sented in Section 3 and they confirm the advantages of our method in comparison with

those described in [4, 27, 36, 49, 52].

Example 3.4.1 ([27, 36]) Consider the following nonlinear Volterra integral equation

x(t) = 1 + (sin(t))2
−

∫ t

0
3 sin(t − s)(x(s))2ds, t ∈ [0, 1],

where u(x) = cos(x) is the exact solution.

The absolute errors for N = 10, 20 and m = q = 3 at t = 0, 0.1, . . . , 1 are displayed in Table

3.1. We used the collocation parameters ci = i
m+1 + 1

5 , i = 1, . . . ,m and R(∞) = −0.02. The
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numerical results obtained by the present method are considerably more accurate in comparison

with the numerical results obtained in [27, 36].

Table 3.1: Comparison of the absolute errors of Example 3.4.1

t Method in [27] Method in [36] Our method
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

0.1 1.01E−5 1.59E−6 1.24E−5 2.54E−8 3.32E−8 7.92E−9
0.2 2.48E−5 3.26E−6 1.62E−6 3.44E−7 1.84E−9 5.15E−9
0.3 3.65E−5 4.72E−6 2.03E−4 9.19E−7 3.58E−8 3.87E−9
0.4 4.61E−5 5.87E−6 2.07E−5 1.44E−6 5.29E−8 8.00E−9
0.5 5.26E−5 6.63E−6 3.84E−5 1.88E−6 9.91E−8 8.90E−10
0.6 5.59E−5 6.98E−6 5.11E−5 2.18E−6 1.48E−7 5.90E−9
0.7 5.58E−5 6.92E−6 7.22E−5 1.83E−6 1.77E−7 9.71E−9
0.8 5.28E−5 6.47E−6 6.43E−5 6.41E−6 2.00E−7 3.34E−9
0.9 4.65E−5 5.70E−6 1.96E−5 1.00E−4 2.04E−7 2.07E−8
1 3.97E−5 4.71E−6 6.36E−4 9.25E−4 1.95E−7 5.13E−9
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Example 3.4.2 ([4, 52]) Consider the following linear Volterra integral equation with exact

solution x(t) = 1 − sinh(t):

x(t) = 1 − t −
t2

2
+

∫ t

0
(t − s)x(s)ds, t ∈ [0, 1].

The absolute errors for m = q = 3 and N = 20 at t = 0, 0.1, . . . , 1 are displayed in Table 3.2. We

used the collocation parameters ci = i
m+1 + 1

5 , i = 1, . . . ,m and R(∞) = −0.02. The numerical

results obtained here are compared in Table 3.2 with the numerical results obtained by using the

methods in [4, 52].

It is seen from Table 3.2 that the results obtained by the present method are much more

accurate than those obtained in [4, 52].

The absolute errors for N = 5 and (q,m) ∈ {(2, 2), (3, 2), (3, 3), (3, 5), (4, 5)} at t = 0, 0.1, . . . , 1

are presented in Table 3.3, we note that the absolute error reduces as q or m increases.

We calculate the experimental order of convergence (EOC) at t = 1 for N = 2l, l = 1, 2, 3, 4, 5,

m = 1, 2, 3 and q = m + 1 in Table 3.4, the result confirm the theoretical result and suggest

that that the order of convergence with q = m + 1 is m + 1. As we have remarked (see

Remark 3.3.1) this is the maximal convergence order that can be obtained with the

present method.

Moreover, we calculate the run time to solve the approximate solution u for N = 6, . . . , 10,m =

7, . . . , 10 and q = m + 1, the numerical results are solved by using Maple version 16.

The computations were performed in a PC with a 2.16 GHz processor, running with 2.00

Go RAM. As it could be expected, the computing time increases with m and N; however

we cannot see a simple relationship between the computing time and the complexity of the

algorithm, probably because this time depends on other factors than the number of evaluations

of the function K. This table shows that accurate results can be obtained by our method in a

small computer with a low computational cost.
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Table 3.2: Comparison of the absolute errors of Example 3.4.2

t Our method Method in Method in
N = 10 N = 20 [4] [52]

0.0 0 0 0 1.98E−14
0.1 1.30E−8 1.98E−9 5.38E−6 1.21E−7
0.2 3.35E−8 2.54E−9 2.20E−5 2.35E−7
0.3 3.14E−8 6.55E−9 4.82E−5 3.54E−7
0.4 5.98E−8 5.80E−9 8.33E−5 4.77E−7
0.5 6.94E−8 3.50E−9 1.26E−4 6.05E−7
0.6 8.01E−8 8.51E−10 1.77E−4 7.39E−7
0.7 1.00E−7 5.83E−9 2.34E−4 8.80E−7
0.8 1.15E−7 7.38E−9 2.97E−4 1.03E−6
0.9 1.37E−7 8.90E−9 3.65E−4 1.19E−6
1 1.62E−7 9.38E−9 4.38E−4 1.36E−6

Table 3.3: Absolute errors for Example 3.4.2

t q = 2 q = 3 q = 3 q = 3 q = 4
m = 2 m = 2 m = 3 m = 5 m = 5

0 0.0 0.0 0.0 0.0 0.0
0.1 8.231E−6 7.282E−6 3.015E−7 7.451E−8 3.701E−8
0.2 8.563E−5 8.373E−5 4.115E−7 1.147E−6 8.474E−7
0.3 1.053E−5 7.583E−6 6.394E−7 5.824E−8 4.007E−8
0.4 1.027E−4 9.863E−5 8.478E−7 8.031E−7 4.328E−7
0.5 1.064E−5 5.410E−6 1.017E−6 2.316E−8 1.897E−8
0.6 1.143E−4 1.070E−4 1.324E−6 1.058E−7 4.785E−8
0.7 1.033E−5 2.283E−6 1.470E−6 1.309E−8 3.040E−8
0.8 1.297E−4 1.175E−4 1.909E−6 1.114E−7 7.258E−8
0.9 9.861E−6 1.815E−6 2.021E−6 8.470E−9 8.137E−10
1 1.514E−4 1.314E−4 2.620E−6 1.156E−7 4.245E−8

Example 3.4.3 ([49]) We consider the following nonlinear Volterra integral equation

x(t) =
t

et2 +

∫ t

0
2tse−x2(s)ds, t ∈ [0, 1],

where the exact solution is x(t) = t.

The absolute errors for N = 20 and m = 3, q = 5 at t = 0, 0.2, . . . , 1 are compared with the

absolute error of the method in [49] in Table 3.5.

Where the collocation parameters ci = i
m+3 + 1

5 , i = 1, . . . ,m and R(∞) = −0.64.
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Table 3.4: EOC and the run-time/sec of Example 3.4.2

N m = 1 m = 2 m = 3
2
4 2.04 2.91 4.00
8 2.05 2.96 4.01
16 2.04 2.91 4.00
32 2.04 2.91 4.00

N m = 7 m = 8 m = 9 m = 10
6 3.9 5.6 9.9 14.8
7 5.8 9.9 17.9 31.1
8 8.9 16.7 24.3 56.6
9 13.3 32.7 43.9 118.4
10 17.4 35.9 126.3 232.3

EOC of Example3.4.2 run-time/sec of Example3.4.2

Table 3.5: Comparison of the absolute errors of Example 3. 3.4.3

t Method in [49] Our method
N = 20 N = 20

0 0 0
0.2 1.49E−8 8.9E−9
0.4 7.74E−7 2.69E−8
0.6 9.36E−6 8.90E−9
0.8 4.58E−5 3.39E−8
1 1.29E−4 2.49E−8

Example 3.4.4 ([49]) We consider the following nonlinear Volterra integral equation

x(t) = t cos(t) +

∫ t

0
t sin(x(s))ds, t ∈ [0, 1],

where the exact solution is x(t) = t.

The absolute errors for N = 25 and m = q = 4 at t = 0.001, 0.2, 0.4, 0.6, 0.8, 1 are compared

with the absolute error of the method in [49] in Table 3.6.

Where the collocation parameters ci = i
m+3 + 1

5 , i = 1, . . . ,m and R(∞) = 0.35.

It is seen from Table 3.6 that the results obtained by the present method is very superior to

that obtained by the method in [49].
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Table 3.6: Comparison of the absolute errors of Example 3.4.4

t Method in [49] Our method
N = 25 N = 25

0.001 1.25E−12 1.75E−11
0.2 3.53E−6 6.30E−8
0.4 5.81E−6 5.40E−8
0.6 7.74E−7 9.60E−8
0.8 1.20E−5 6.00E−9
1 3.98E−5 7.20E−8

3.5 Conclusion

We have shown that the method yields an efficient and very accurate numerical method

for the approximation of solution of the in the spline space In this chapter, we have used

a iterative collocation method for the numerical solution of nonlinear volterra integral

equation VIDEs (1.43) inthe spline space S(0)
m (I,ΠN) . It is proved that the method is

convergent with an experimental order of convergence EOC = m + 1 . This method is

easy to implement and the coefficients of the approximation solution are determined by

using iterative formulas without the need to solve any system of algebraic equations.

Numerical examples showing that the method is convergent with a good accuracy and

the numerical results confirmed the theoretical estimates.
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CONCLUSION

In this part, we have used an iterative collocation method based on the Lagrange

polynomials for the numerical solution of Volterra integral equations (1.43) in the spline

space S(−1)
m−1(ΠN) and Iterative Continuous Collocation Method for Solving Nonlinear

Volterra Integral Equations (1.43) in the spline space S(0)
m (ΠN). The main advantages

of this method that, is easy to implement, has high order of convergence and the

coefficients of the approximation solution are determined by using iterative formulas

without the need to solve any system of algebraic equations. Numerical examples

showing that the method is convergent with a good accuracy and the comparison of

the results obtained by the present method with the other methods reveals that the

method is very effective and convenient.
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Numerical solution of nonlinear

Volterra integro-differential equation
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INTRODUCTION

In this part, we investigate an continuous iterative colocation method for the following

nonlinear Volterra integro-differential equation

x′(t) = f (t) + Q(t, x(t)) +

∫ t

0
K(t, s, x(s), x′(s))ds, t ∈ I = [0,T]

x(t0) = x0,

(3.11)

where the functions f ,Q,K are sufficiently smooth.

There are several numerical methods for approximating the solution of equation (3.11).

For example, spectral methods, implicit Runge-Kutta methods, Galerkin methods, col-

location methods, and Legendre wavelets series, (cf, e.g. [38, 58, 13, 2, 39, 40], and

references therein).

The purpose of this part is to solve equation (3.11) by the iterative collocation method.

The main idea of the iterative collocation method is to obtain an explicit solution with-

out needed to solve any algebraic system. Many authors used this method to solve

integral equations. L. Hacia [31], used the Iterative-Collocation Method to solve in-

tegral equations of heat conduction problems, H. Brunner [15] applied the iterated

collocation methods to approximate the solution for Volterra integral equations with

delay arguments. In [9, 65] the variational iteration method is used to solve integral
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and integro-differential equations.

The collocation method has been introduced for the first time in 1937 by Frazer et al

[28]. After that, many reaschers used it to solve many phenomena in physics and

engineering such as unsteady heat condition problems and a viscous fluid problem.

Recently, the collocation method has been used over a wide range of problems (cf, e.g.

[22, 33, 57, 59]). Collocation methods have many good properties such as high order of

convergence, strong stability properties and flexibility in such a way that if we know

some information of the exact solution, then it is possible to choose the collocation

functions and the collocation points in order to rise the order of convergence, see for

example [21] in the case of ordinary differential equations, [44, 12] in the case of Volterra

integral equations, [17] in the case of Volterra integro-differential equations. and [41] in

the case of Numerical solution of high-order linear Volterra integro-differential equa-

tions by using Taylor collocation method.

This part is concerned with the iterative collocation method to obtain an approximate

solution for (3.11), our method presents some advantages:

• It provides a global approximation of the solution

• Without needed to solve any algebraic system

• High order of convergence

• Provides an explicit numerical solution and easy to be implemented.

The outlines of this part is as follows. In chapter 4, we approximate the solution of

(3.11) in the space of continuous piecewise polynomials of degree m as follows

S(0)
m (ΠN) = {u ∈ C(I,R) : un = u/σn ∈ πm,n = 0, ...,N − 1}.

and in chapter 5 we approximate the solution of (3.11) in the space of continuous

piecewise polynomials of degree m + 1 as follows

S(1)
m+1(ΠN) = {u ∈ C1(I,R) : un = u/σn ∈ π
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Each chapter are organized as follows.

In section 2, the spline polynomial has been used to approximate equation (3.11) based

on the iterative collocation method, error analysis has been discussed in section 3,

section 4 is devoted to present some numerical examples, in the last section, we give a

conclusion.
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CHAPTER 4

ITERATIVE CONTINUOUS

COLLOCATION METHOD FOR

SOLVING NONLINEAR VOLTERRA

INTEGRO-DIFFERENTIAL

EQUATIONS IN THE SPACE S(0)
M (ΠN)
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4.1 Introduction

In this chapter, we consider the following Volterra integro-differential equations,

x′(t) = f (t) + Q(t, x(t)) +

∫ t

0
K(t, s, x(s), x′(s))ds, t ∈ I = [0,T]

x(t0) = x0,

(4.1)

where the functions f ,Q,K are sufficiently smooth. The existence and the uniqueness

of the solution of (4.1) can be found, for example, in [12].

integro-differential equations find its applications in various fields of science and en-

gineering. There are several numerical methods for approximating the solution of

integro-differential equations are known and many different basic functions have been

used. There are various methods to solve integro-differential equations such as Ado-

mian decomposition method, successive substitutions, Laplace transformation method,

Picard’s method, etc (Wazwaz (2011)[67]). collocation theory is a relatively new and

an emerging tool in applied mathematical research area. It has been applied in a wide

range of engineering disciplines; particularly,and fast algorithms for easy implemen-

tation. collocation method have been applied for the numerical solution of different

kinds of integral equations,

The aim of this chapter is to generalize the iterative continuous collocation method

in [55] for construct an iterative continuous approximate solution for equation (4.1). In

our method the approximate solution is explicit, direct and obtained by using simple

iterative formulas.

In fact the applications of the iterative collocation method in the numerical analysis

field possessing some of the well known advantages such as:

1. It is accurate,

2. It is possible to pick any point in the interval of integration and as well the

approximate solutions and their derivatives will be applicable.

3. The method does not require discretization of the variables, and it is not affected
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by computation Ind off errors and one is not faced with necessity of large computer

memory and time.

The outlines of this chapter is as follows. In section 2, an iterative collocation method

has been used to construct an approximate solution for (4.1) in the continuous spline

polynomials space S(0)
m (ΠN), the convergence analysis has been given in section 3. Some

numerical illustrations are provided in section 4.

4.2 Description of the method

Let ΠN be a uniform partition of the interval I = [0,T] with grid points tn = nh, n =

0, ...,N − 1, where the stepsize is given by h =
T
N

. Let the collocation parameters be

0 < c1 < ...... < cm < 1 and the collocation points

ΓN,m = {tn, j = tn + c jh, j = 1, ...,m,n = 0, ...,N − 1}.

Define the subintervals σn = [tn, tn+1], and σN−1 = [tN−1, tN].

Moreover, denote by πm the set of all real polynomials of degree not exceeding m.

We consider polynomial spline approximations u(t) of the exact solution x(t) in the

spline space

S(0)
m (ΠN) = {u ∈ C(I,R) : un = u/σn ∈ πm,n = 0, ...,N − 1, }.

This is the space of piecewise polynomials of degree at most m. Its dimension is Nm+1,

the same as the number of collocation points.

We seek u ∈ S(0)
m (ΠN) satisfies the collocation equation

u′(t) = f (t) + Q(t,u(t)) +

∫ t

0
K(t, s,u(s),u′(s))ds, t ∈ ΓN,m,

u(t0) = f (0).
(4.2)
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In what follows, we consider two equivalent reformulations of problem (4.2) by using

the function w(t) = u′(t) ∈ S(−1)
m−1(ΠN). Since wn ∈ πm−1, it holds for µ ∈ (0, 1],

wn(tn + µh) =

m∑
v=1

Lv(s)wn(tn,v), (4.3)

un(tn + µh) = f (0) + h
n−1∑
p=0

m∑
v=1


1∫

0

Lv(τ)dτ

 wp(tp,v) + h
m∑

v=1


µ∫

0

Lv(τ)dτ

 wn(tn,v), (4.4)

where L j(µ) =
m∏

l, j

µ − cl

c j − cl
are the Lagrange polynomials associate with the parameters

c j, j = 1, ...,m. By using (4.4), the collocation equation (4.2) may be rewritten as the

following nonlinear Volterra integro-differential equation with respect to w.

wn(t) = f (t) + Q

t, f (0) +

t∫
0

w(r)dr

 +

t∫
0

K

t, s, f (0) +

s∫
0

w(r)dr,w(s)

 ds

0 ≤ τ ≤ s ≤ t = tn, j, j = 1, ...,m.

Hence, for each j = 1, ...,m,n = 0, ...,N − 1, wn(tn, j) satisfies the following nonlinear

system,

wn(tn, j) = f (tn, j) + Q

tn, j, f (0) + h
n−1∑
p=0

1∫
0

wp(tp + τh)dτ + h

c j∫
0

wn(tn + τh)dτ


+ h

n−1∑
p=0

∫ 1

0
K

(
tp, j, tp + µh,up(tp + µh),wp(tp + µh)

)
dµ

+ h
∫ c j

0
K

(
tn, j, tn + µh,un(tn + µh),wn(tn + µh)

)
dµ,

(4.5)

Since the above system is nonlinear, we will use an iterative collocation solution uq
∈

S0
m(I,ΠN), q ∈N, to approximate the exact solution of (4.1) such that

wq
n(tn + µh) =

m∑
v=1

Lv(µ)wq
n(tn,v), (4.6)
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and

uq
n(tn + µh) = f (0) + h

n−1∑
p=0

m∑
v=0


1∫

0

Lv(τ)dτ

 wq
p(tp,v) + h

m∑
v=0


µ∫

0

Lv(τ)dτ

 wq
n(tn,v), (4.7)

where the coefficients wq
n(tn, j) are given by the following formula:

wq
n(tn, j) = f (tn, j) + Q

tn, j, f (0) + h
n−1∑
p=0

1∫
0

wq
p(tp + τh)dτ + h

c j∫
0

wq−1
n (tn + τh)dτ


+ h

n−1∑
p=0

∫ 1

0
K

(
tp, j, tp + µh,uq

p(tp + µh),wq
p(tp + µh)

)
dµ

+ h
∫ c j

0
K

(
tn, j, tn + µh,Hq−1

n (tn + µh),wq−1
n (tn + µh)

)
dµ,

(4.8)

where,

Hq
n(tn + µh) = f (0) + h

n−1∑
p=0

m∑
v=0


1∫

0

Lv(τ)dτ

 wq
p(tp,v) + h

m∑
v=0


µ∫

0

Lv(τ)dτ

 wq−1
n (tn,v).

Such that the initial values w0
n(tn, j) belong in a bounded interval J.

Remark 4.2.1 The above formula is explicit and the approximate solution uq is given without

needed to solve any algebraic system.

In the next section, we will prove the convergence of the approximate solution uq to the

exact solution x of (4.1), moreover, the order of convergence is m for all q ≥ m.
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4.3 Convergence analysis

In this section, we assume that the functions Q and K satisfy the following Lipschitz

conditions: there exist Ai ≥ 0 i = 0, 1, 2 such that

|Q(t, x1) −Q(t, x2)| ≤ A0|x1 − x2|,

|K(t, s, x1, y1) − K(t, s, x2, y2)| ≤ A1|x1 − x2| + A2|y1 − y2|.

The following lemma will be used in this section. The following result gives the

existence and the uniqueness of a solution for the nonlinear system (4.5).

Lemma 4.3.1 For sufficiently small h, the nonlinear system (4.5) has a unique solution u ∈

S0
m(I,ΠN).

Proof. We will use the induction combined with the Banach fixed point theorem.

(i) On the interval σ0 = [t0, t1], the nonlinear system (4.5) becomes

w0(t0, j) = f (t0, j) + Q

t0, j,u0 + h
m∑

v=1


c j∫

0

Lv(τ)dτ

 w0(t0,v)


+ h

∫ c j

0
K

t0, j, t0 + µh,u0 + h
m∑

v=1


µ∫

0

Lv(τ)dτ

 w0(t0,v),
m∑

v=1

Lv(µ)w0(t0,v)

 dµ.

(4.9)

We consider the operator Ψ defined by:

Ψ : Rm
−→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),
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such that for j = 1, ...,m, we have

Ψ j(x) = f (t0, j) + Q

t0, j,u0 + h
m∑

v=1


c j∫

0

Lv(τ)dτ

 xv


+ h

∫ c j

0
K

t0, j, t0 + µh,u0 + h
m∑

v=1


µ∫

0

Lv(τ)dτ

 xv,
m∑

v=1

Lv(µ)xv

 dµ.

Hence, for all x, y ∈ Rm, we have

‖Ψ(x) −Ψ(y)‖∞≤ hmb (A0 + A1 + A2) ‖x − y‖∞,

where b = max{|Lv(µ)|, µ ∈ [0, 1], v = 1, ...,m}.

Since hmb (A0 + A1 + A2) < 1 for sufficiently small h, then by Banach fixed point

theorem, the nonlinear system (4.9) has a unique solution on the interval σ0.

(ii) Suppose that u exists and unique on the intervals σi, i = 0, ...,n − 1 for n ≥ 1 and

we show that u exists and unique on the interval σn.

On the interval σn, the nonlinear system (4.5) becomes

wn(tn, j) =F(tn, j) + Q

tn, j,G(tn, j) + h
m∑

v=1


c j∫

0

Lv(τ)dτ

 wn(tn,v)


+ h

∫ c j

0
K

tn, j, tn + µh,R(tn, j) + h
m∑

v=1


µ∫

0

Lv(τ)dτ

 wn(tn,v),
m∑

v=1

Lv(µ)wn(tn,v)

 dµ,

where,

F(tn, j) = f (tn, j) + h
n−1∑
p=0

∫ 1

0
K

(
tp, j, tp + µh,up(tp + µh),wp(tp + µh)

)
dµ.

G(tn, j) = f (0) + h
n−1∑
p=0

m∑
v=1


1∫

0

Lv(τ)dτ

 wp(tp,v).
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We consider the operator Ψ defined by:

Ψ : Rm
−→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),

such that for j = 1, ...,m, we have

Ψ j(x) =F(tn, j) + Q

tn, j,G(tn, j) + h
m∑

v=1


c j∫

0

Lv(τ)dτ

 xv


+ h

∫ c j

0
K

tn, j, tn + µh,G(tn, j) + h
m∑

v=1


µ∫

0

Lv(τ)dτ

 xv,
m∑

v=1

Lv(µ)xv

 dµ,

Hence, for all x, y ∈ Rm, we have

‖Ψ(x) −Ψ(y)‖∞≤ hmb (A0 + A1 + A2) ‖x − y‖∞,

Since hmb (A0 + A1 + A2) < 1 for sufficiently small h, then by Banach fixed point

theorem, the nonlinear system (4.5) has a unique solution u on σn.

The following result gives the convergence of the approximate solution u to the exact

solution x.

Theorem 4.3.1 Let f ,Q,K be m times continuously differentiable on their respective domains.

Then for sufficiently small h, the collocation solution u converges to the exact solution x, and

the resulting error function e := x − u satisfies:

‖ev
‖L∞(I) ≤ Chm,

for v = 0, 1, where C is a finite constant independent of h.
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Proof. Let y = x′. It holds that

yn(tn + µh) =

m∑
j=1

L j(µ)yn(tn, j) + εn(µ), εn(µ) = hm ym(ζn(µ))
m!

m∏
j=1

(µ − c j). (4.10)

Hence,

xn(tn + µh) = u0 + h
n−1∑
p=0

1∫
0

 m∑
v=1

Lv(τ)yp(tp,v) + hm ym(ζp(τ))
m!

m∏
j=1

(τ − c j)dτ


+ h

µ∫
0

 m∑
v=1

Lv(τ)yn(tn,v) + hm ym(ζn(τ))
m!

m∏
j=1

(τ − c j)

 dτ,

(4.11)

It follows that the errors ξ = y − w and e = x − u have the following representation

ξn(tn + µh) =

m∑
j=1

L j(µ)ξn(tn, j) + εn(µ), εn(µ) = hm ym(ζn(µ))
m!

m∏
j=1

(µ − c j), (4.12)

e(tn + µh) =h
n−1∑
p=0

1∫
0

 m∑
v=1

Lv(τ)ξp(tp,v) + hm ym(ζp(τ))
m!

m∏
j=1

(τ − c j)

 dτ

+ h

µ∫
0

 m∑
v=1

Lv(τ)ξn(tn,v) + hm ym(ζn(τ))
m!

m∏
j=1

(τ − c j)

 dτ,

(4.13)

where ξn = ξ|σn and en = e|σn .

On the other hand, from (4.5), we have

|ξn(tn, j)| ≤hAb
n∑

p=0

m∑
v=1

|ξp(tp,v)|

+ hAb
n−1∑
p=0

h
p−1∑
i=0

m∑
v=1

|ξi(ti,v)| + h
m∑

v=1

|ξp(tp,v)| +
m∑

v=1

|ξp(tp,v)|


+ hAb

h
n−1∑
p=0

m∑
v=1

|ξp(tp,v)| + h
m∑

v=1

|ξn(tn,v)| +
m∑

v=1

|ξn(tn,v)|

 + αhm,

(4.14)
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where A = max{Ai, i = 0, 1, 2} and α is a positive number.

We consider the sequence ξn = max{|ξn(tn,v)| for n = 0, ...,N − 1.

Then, from (4.14), ξn satisfies for n = 0, ...,N − 1,

ξn ≤Ahbm
n∑

p=0

ξp + hAbm
n−1∑
p=0

h
p−1∑
i=0

ξi + hξp + ξp


+ hAbm

h
n−1∑
p=0

ξp + hξn + ξn

 + αhm

≤h Abm(2 + 3T)︸         ︷︷         ︸
α1

n−1∑
p=0

ξp + h Abm (T + 2)︸        ︷︷        ︸
α2

ξn + αhm.

(4.15)

Hence, for h <
1
α2

, we have for all h ∈ (0, h]

ξn ≤
α

1 − hα2

hm +
α1

1 − hα2

h
n−1∑
p=0

ξp.

Then, by Lemma 1.7.1, for all n = 0, ...,N − 1

ξn ≤
α

1 − hα2

hm exp
(

Tα1

1 − hα2

)
.

Therefore, by using (4.12), we obtain

‖e‖ ≤ mb max{ξn,n = 0, ...,N − 1} + βhm

≤ mb
α

1 − hα2

exp
(

Tα1

1 − hα2

)
hm + βhm

≤

(
mb

α

1 − hα2

exp
(

Tα1

1 − hα2

)
+ β

)
︸                                  ︷︷                                  ︸

α3

hm,
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where β is a positive number.

Therefore, by using (4.13), we obtain

‖e‖ ≤ hmb
n−1∑
p=0

ξp + hmbξn + γhm
≤ 2mbTα3hm + γhm,

where γ is a positive number,

Thus, the proof is completed by taking C = max(α3, 2mbTα3 + γ).

The following result gives the convergence of the iterative solution uq to the exacts

solution x.

Theorem 4.3.2 Consider the iterative collocation solution uq defined by (4.6), (4.7) and (4.8),

then for any initial conditions (u′)0(tn, j) = w0(tn, j) ∈ J (J is a bounded interval), the iterative

collocation solution uq converges to the exact solution x. Moreover, the following error estimates

hold

‖(uq)(v)
− x(v)

‖ ≤ Chm + C′βqhq

for v = 0, 1, where C,C′, β are finite constants independent of h and q.

Proof. We define the error ξq, eq, εq and ςq by ξq(t) = wq(t)− y(t), eq(t) = uq(t)−x(t), εq =

wq(t) − w(t), ςq = uq(t) − u(t) where u is defined by lemma 4.3.1.

We have, from (4.5) and (4.8), for all n = 0, ...,N − 1 and j = 1, ...,m

|εq
n(tn, j)| ≤hAb

 n−1∑
p=0

m∑
v=0

|εq
p(tp,v)| +

m∑
v=0

|εq−1
n (tn,v)|


+ hAb

n−1∑
p=0

h
p−1∑
i=0

m∑
v=0

|εq
i (ti,v)| + h

m∑
v=0

|εq
p(tp,v)| +

m∑
v=0

|εq
p(tp,v)|


+ hAb

h
n−1∑
p=0

m∑
v=0

|εq
p(tp,v)| + h

m∑
v=0

|εq−1
n (tn,v)| +

m∑
v=0

|εq−1
n (tn,v)|

 ,
(4.16)
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Now, for each fixed q ≥ 1, we consider the sequence εq
n = max{

∣∣∣εq
n(tn,v)

∣∣∣ v = 1....m}. It

follows, from (4.16), that for n = 0, ...,N − 1

εq
n ≤ hAbm

 n−1∑
p=0

εq
p + εq−1

n

+hAbm
n−1∑
p=0

h
p−1∑
i=0

εq
i + hεq

p + εq
p


+hAbm

h
n−1∑
p=0

εq
p + hεq−1

n + εq−1
n


≤ h Abm(2 + 3T)︸         ︷︷         ︸

α1

n−1∑
p=0

εq
p + h Abm(2 + T)︸       ︷︷       ︸

α2

εq−1
n ,

(4.17)

We consider the sequence ηq = max{εq
n,n = 0, ....,N − 1} for q ≥ 1.

Then, from (4.17), we obtain

εq
n ≤ α1h

n−1∑
p=0

εq
p + α2hηq−1. (4.18)

Hence, by Lemma 1.7.1, for all n = 0, ...,N − 1

ηq
≤ α2 exp (α1T)︸        ︷︷        ︸

β

hηq−1
≤ β2h2ηq−2

≤ ... ≤ βqhqη0.

Since, w0(tn, j) ∈ J (bounded interval) and w is bounded by Lemma 4.3.1, then there

exists δ > 0 such that η0 < δ, which implies that, for all q ≥ 1

ηq
≤ δβqhq.

Therefore, by using (4.3) and (4.6), we obtain

‖εq
‖ ≤ mbηq

≤ mbδ︸︷︷︸
d

βqhq,
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Hence, by Theorem (4.3.1), we deduce that

‖ξq
‖ ≤ ‖εq

‖ + ‖w − y‖ ≤ dβqhq + Chm.

On the other hand, from (4.4) and (4.7), we have

‖ςq
‖ ≤ 2Tmb‖εq

‖ ≤ 2Tmbdβqhq.

Finally, by using Theorem (4.3.1), we deduce that

‖eq
‖ ≤ ‖ςq

‖ + ‖u − x‖ ≤ 2Tmbd︸ ︷︷ ︸
d′

βqhq + Chm.

Thus, the proof is completed by taking C′ = max(d, d′).

4.4 Numerical examples

In order to test the applicability of the presented method, we consider the following

examples with T = 1. These examples have been solved with various values of N,m

and q = m. We used the collocation parameters ci = i
m+1 , i = 1, ...,m. In each example,

we calculate the error between x and the iterative collocation solution um.

The absolute errors at the particular points are given to compare our solutions with the

solutions obtained by [61, 64].

The results in these examples confirm the theoretical results; moreover, the results

obtained by the present method is very superior to that obtained by the methods in

[61, 64].

Example 4.4.1 Consider the nonlinear Volterra integro-differential equation given by

x′(t) = f (t) +

∫ t

0
cos(t + s + x(s) + x′(s)) +

1
1 + x2(s)

ds, t ∈ [0, 1].
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with f is chosen so that the exact solution is x(t) = 2t + 5. The absolute errors for (N,m) ∈

{(2, 3), (4, 3), (4, 4), (6, 4)} at t = 0, 0.1, ..., 1 are presented in Table 4.1. From the Table 4.1, we

note that the absolute error reduces as N or m increases.

Table 4.1: Absolute errors for Example 4.4.1

t N = 2 N = 4 N = 4 N = 6
m = 3 m = 3 m = 4 m = 4

0 0.0 0.0 0.0 0.0
0.1 2.03 E −4 1.48 E −5 4.40 E −7 4.99 E −8
0.2 2.37 E −4 1.73 E −5 1.36 E −6 2.90 E −7
0.3 2.23 E −4 4.94 E −7 1.43 E −6 2.27 E −7
0.4 2.88 E −4 7.86 E −6 1.21 E −6 9.56 E −7
0.5 5.53 E −4 6.69 E −5 8.55 E −6 9.58 E −7
0.6 1.07 E −3 6.17 E −5 7.95 E −6 8.30 E −7
0.7 1.12 E −3 5.43 E −5 7.46 E −6 7.60 E −7
0.8 1.14 E −3 6.04 E −5 7.24 E −6 6.97 E −7
0.9 1.52 E −3 6.90 E −5 6.36 E −6 3.84 E −7
1 2.71 E −3 1.38 E −4 6.64 E −7 4.33 E −7
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Example 4.4.2 Consider the nonlinear Volterra integro-differential equation given by

x′(t) = f (t) +

∫ t

0

cos(t)
1 + t + (x′(s))2 +

t sin(s)
2 + x2(s)

ds, t ∈ [0, 1].

with f is chosen so that the exact solution is x(t) = 3 cos(t) + 1. The absolute errors for

(N,m) ∈ {(2, 3), (4, 3), (4, 4), (6, 4)} at t = 0, 0.1, ..., 1 are presented in Table 4.2. From the Table

4.2, we note that the absolute error reduces as N or m increases.

Table 4.2: Absolute errors for Example 4.4.2

t N = 2 N = 4 N = 4 N = 6
m = 3 m = 3 m = 4 m = 4

0 0.0 0.0 0.0 0.0
0.1 6.87 E −4 5.08 E −5 1.33 E −7 1.13 E −8
0.2 8.11 E −4 5.17 E −5 1.36 E −7 4.96 E −8
0.3 8.13 E −4 8.67 E −5 5.64 E −7 6.11 E −8
0.4 8.41 E −4 9.49 E −5 6.16 E −7 1.38 E −7
0.5 7.58 E −4 9.41 E −5 7.46 E −7 1.61 E −7
0.6 1.28 E −3 1.37 E −4 1.43 E −6 2.44 E −7
0.7 1.38 E −3 1.40 E −4 1.46 E −6 3.58 E −7
0.8 1.39 E −3 1.65 E −4 2.38 E −6 3.69 E −7
0.9 1.41 E −3 1.71 E −4 2.47 E −6 5.06 E −7
1 1.35 E −3 1.69 E −4 2.61 E −6 5.13 E −7
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Example 4.4.3 Consider the nonlinear Volterra integro-differential equation given by

x′(t) = f (t) +

∫ t

0
(ts arctan(s + x(s) + x′(s)) + cos(t − s + x(s)))ds, t ∈ [0, 1].

with f is chosen so that the exact solution is x(t) = 2t + 1. The absolute errors for (N,m) ∈

{(2, 2), (2, 3), (4, 3), (4, 4)} at t = 0, 0.1, ..., 1 are presented in Table 4.2. From the Table 4.3, we

note that the absolute error reduces as N or m increases.

Table 4.3: Absolute errors for Example 4.4.3

t N = 2 N = 2 N = 4 N = 4
m = 2 m = 3 m = 3 m = 4

0 0.0 0.0 0.0 0.0
0.1 1.26 E −4 5.86 E −7 1.40 E −8 3.03 E −9
0.2 2.47 E −4 1.58 E −6 5.66 E −8 8.11 E −9
0.3 3.61 E −4 3.42 E −6 1.00 E −7 1.49 E −9
0.4 4.70 E −4 6.53 E −6 1.13 E −7 6.14 E −9
0.5 5.73 E −4 1.13 E −5 1.47 E −7 2.00 E −9
0.6 5.66 E −4 1.13 E −5 1.43 E −7 2.16 E −9
0.7 5.63 E −4 1.11 E −5 1.41 E −7 1.01 E −8
0.8 5.66 E −4 1.06 E −5 1.31 E −7 4.96 E −10
0.9 5.73 E −4 1.01 E −5 1.26 E −7 1.76 E −10
1 5.84 E −4 9.46 E −6 1.22 E −7 2.00 E −9
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Example 4.4.4 ([61, 64]) Consider the linear Volterra integro-differential equation given by

x′(t) =1 −
∫ t

0
x(s)ds, t ∈ [0, 1].

with the initial conditions x(0) = 0 and the exact solution x(t) = sin(t) . Here, f (t) = 1, 1(t) =

0,K(t, s) = −1.

The absolute errors for N = 6, 10 and m = q = 5 at t = 0, 0.1, ..., 1 are displayed in Table 4.4.

The numerical results of the absolute error function obtained by the present method are compared

in Table 4.4 with the absolute error function of the Taylor method given in [61] and Bessel method

[64] for an approximate polynomial solutions of degree 5.

Table 4.4: Comparison of the absolute errors of Example 4. 4.4

t Taylor method [61] Bessel method [64] Present method Present method
N = 6 N = 10

0.0 0.0 0.0 0.0 0.0
0.1 2.00 E −11 2.49 E −7 1.58 E −9 1.26 E −10
0.2 2.50 E −9 4.02 E −7 5.45 E −10 9.50 E −11
0.3 4.33 E −8 3.00 E −7 2.71 E −9 2.61 E −10
0.4 3.24 E −7 2.05 E −7 8.90 E −10 1.08 E −10
0.5 1.54 E −6 2.83 E −7 5.60 E −9 2.04 E −10
0.6 5.52 E −6 3.75 E −7 7.20 E −9 4.96 E −12
0.7 1.62 E −5 1.65 E −7 1.19 E −9 4.62 E −10
0.8 4.12 E −5 1.81 E −7 1.36 E −10 5.00 E −10
0.9 9.38 E −5 1.18 E −6 1.27 E −9 1.72 E −10
1.0 1.95 E −4 9.66 E −6 7.85 E −9 9.92 E −10
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4.5 Conclusion

In this chapter, we proposed the iterative collocation method for the numerical solu-

tion of integro-differential equations(4.1) in the spline space S(0)
m (ΠN). Our numerical

results are compared with exact solutions and existing methods. Error analysis shows

the accuracy and effectiveness of the proposed scheme Hence, the present method is

approached through the illustrative examples which show the efficiency, validity and

applicability.
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5.1 Introduction

In this chapter, we consider the following Volterra integro-differential equations,

x′(t) = f (t) +

∫ t

0
K(t, s, x(s))ds, x(t0) = x0, t ∈ I = [0,T], (5.1)

where the functions f ,K are sufficiently smooth.

There are several numerical methods for approximating the solution of equation (5.1).

For example, spectral methods, implicit Runge-Kutta methods, Galerkin methods,

collocation methods, and Legendre wavelets series, (cf, e.g. [38, 58, 13, 2, 39, 40], and

references therein).

The purpose of this paper is to solve equation (5.1) by the iterative collocation method.

in the spline space S(1)
m+1(ΠN).

The outlines of this chapter is as follows. In section 2, the spline polynomial has been

used to approximate equation (5.1) based on the iterative collocation method, error

analysis has been discussed in section 3, section 4 reports some numerical examples ,

in the last section, we give a conclusion.

5.2 Description of the method

Let ΠN be a uniform partition of the interval I = [0,T] defined by tn = nh, n =

0, ...,N − 1, where the stepsize is given by
T
N

= h. Let the collocation parameters be 0 ≤

c1 < ...... < cm ≤ 1 and the collocation points be tn, j = tn + c jh, j = 1, ...,m,n = 0, ...,N − 1.

Define the subintervals σn = [tn, tn+1], and σN−1 = [tN−1, tN]. Moreover, denote by πm+1

the set of all real polynomials of degree not exceeding m + 1.

We define the real polynomial spline space of degree m + 1 as follows:

S(1)
m+1(ΠN) = {u ∈ C1(I,R) : un = u/σn ∈ πm+1,n = 0, ...,N − 1}.
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It holds for any y ∈ Cm+2([0,T]) that

x′(tn + µh) = L0(v)x′(tn) +

m∑
v=1

Lv(µ)x′(tn,v) + hm+1R1
m+1,n(µ). (5.2)

The Peano remainder term and Peano kernel are given by

R1
m+1,n(µ) :=

1∫
0

Km(s, τ)x(m+1)(tn + τ)dτ, (5.3)

and

Km(µ, τ) :=
1

(m − 1)!

(µ − τ)m−1
+ −

m∑
v=1

Lv(µ)(cv − τ)m−1
+

 . (5.4)

Integration of (5.2) leads to

x(tn + µh) = x(tn) + hB0(µ)x′(tn) + h
m∑

v=1

Bv(µ)x′(tn,v) + hm+2Rm+1,n(µ), (5.5)

where

Rm+1,n(µ) :=

µ∫
0

R1
m+1,n(τ)dτ,

where µ ∈ [0, 1], B0(µ) =
µ∫

o
L0(v)dv and B j(µ) =

µ∫
o

L j(v)dv with

L0(v) = (−1)m
m∏

l=1

v − cl

cl
and L j(v) = v

c j

m∏
l, j

v − cl

c j − cl
, j = 1, ...,m are the Lagrange polynomials

associate with the parameters c j, j = 1, ...,m.

Inserting (5.5) for the function s 7−→ K(t, s, x(s)) into (5.1), we obtain for each j =
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1, ...,m, ,n = 0, ...,N − 1

x′(tn, j) = f (tn, j)

+

n−1∑
p=0

1∫
o

K

tn, j, tp + µh, x(tp) + hB0(µ)x′(tp) + h
m∑

v=1

Bv(µ)x′(tp,v) + hm+2Rm+1,p(µ)

 dµ

+ h

c j∫
o

K

tn, j, tn + µh, x(tn) + hB0(µ)x′(tn) + h
m∑

v=1

Bv(µ)x′(tn,v) + hm+2Rm+1,n(µ)

 dµ.

(5.6)

It holds for any u ∈ S1
m+1(I,ΠN) that

u′n(tn + µh) = L0(µ)u′n−1(tn) +

m∑
v=1

Lv(µ)u′n(tn,v), (5.7)

and

un(tn + µh) = un−1(tn) + hB0(µ)u′n−1(tn) + h
m∑

v=1

Bv(µ)u′n(tn,v), µ ∈ [0, 1]. (5.8)

Now, we approximate x by u ∈ S1
m+1(I,ΠN) such that u′(tn, j) satisfy the following non-

linear system,

u′n(tn, j) = f (tn, j)

+

n−1∑
p=0

1∫
o

K

tn, j, tp + µh,up(tp) + hB0(µ)u′p(tp) + h
m∑

v=1

Bv(µ)u′p(tp,v)

 dµ

+ h

c j∫
o

K

tn, j, tn + µh,un−1(tn) + hB0(µ)u′n−1(tn) + h
m∑

v=1

Bv(µ)u′n(tn,v)

 dµ.

(5.9)

for n = 0, ...,N − 1, j = 1, ...,m where u′
−1(t0) = x′(0) = f (0) and u−1(t0) = x(0).

Since the above system is nonlinear, we will use an iterative collocation solution uq
∈

S1
m+1(I,ΠN), q ∈N, to approximate the solution of (5.1) such that

(uq
n)′(tn + µh) = L0(µ)(uq

n−1)′(tn) +

m∑
v=1

Lv(µ)(uq
n)′(tn,v), µ ∈ [0, 1], (5.10)
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and

uq
n(tn + µh) = uq

n−1(tn) + hB0(µ)(uq
n−1)′(tn) + h

m∑
v=1

Bv(µ)(uq
n)′(tn,v), µ ∈ [0, 1], (5.11)

where the coefficients (uq
n)′(tn, j) are given by the following formula:

(uq
n)′(tn, j) = f (tn, j)

+

n−1∑
p=0

1∫
o

K

tn, j, tp + µh,uq
p(tp) + hB0(v)(uq

p)′(tp) + h
m∑

v=1

Bv(v)(uq
p)′(tp,v)

 dµ

+ h

c j∫
o

K

tn, j, tn + µh,uq
n−1(tn) + hB0(v)(uq

n−1)′(tn) + h
m∑

v=1

Bv(v)(uq−1
n )′(tn,v)

 dµ.

(5.12)

Such that (uq
−1)′(t0) = f (0) and uq

−1(t0) = x0 for all q ∈ N and the initial values

(u0
n)′(tn, j) ∈ J (J is a bounded interval).

The above formula is explicit and the approximate solution uq is given without needed

to solve any algebraic system.

In the next section, we will prove the convergence of the approximate solution uq to the

exact solution x of (5.1), moreover, the order of convergence is m for all q ≥ m.

5.3 Convergence analysis

In this section, we assume that the functions K satisfy the Lipschitz condition with

respect to the third variable: there exists K ≥ 0 such that

|K(t, s, x1) − K(t, s, x2| ≤ K|x1 − x2|. The following three lemmas will be used in this

section. The following result gives the existence and the uniqueness of a solution for

the nonlinear system (5.8).

Lemma 5.3.1 For sufficiently small h, the nonlinear system (5.8) defines a unique solution

u ∈ S1
m+1(I,ΠN) which is given by (5.9).
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Proof. We will use the induction combined with the Banach fixed point theorem.

(i) On the interval σ0 = [t0, t1], the nonlinear system (5.9) becomes

u′n(t0, j) = f (t0, j) + h

c j∫
0

K

t0, j, t0 + µh, x0 + h f (0)B0(µ) + h
m∑

v=1

Bv(µ)u′0(t0,v)

 dµ.

We consider the operator Ψ defined by:

Ψ : Rm
−→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),

such that for j = 1, ...,m, we have

Ψ j(x) = f (t0, j) + h

c j∫
0

K

t0, j, t0 + µh, x0 + h f (0)B0(µ) + h
m∑

v=1

Bv(µ)xv

 dµ.

Hence, for all x, y ∈ Rm, we have

‖Ψ(x) −Ψ(y)‖∞≤ h2mbK‖x − y‖∞,

where b = max{|Bv(µ)|, µ ∈ I, v = 0, ...,m}.

Since h2mbK < 1 for sufficiently small h, then by Banach fixed point theorem, the

nonlinear system (5.9) has a unique solution u′(t0, j), j = 1, ...,m.

Hence, the equation (5.8) defines a unique solution u0 on σ0.

(ii) Suppose that up exists and unique on the intervals σp, p = 0, ...,n− 1 for n ≥ 1 and

we show that un exists and unique on the interval σn.

On the interval σn, the nonlinear system (5.9) becomes

u′n(tn, j) = F(tn, j) + h

c j∫
o

K

tn, j, tn + µh,G(tn, j) + h
m∑

v=1

Bv(µ)u′n(tn,v)

 dµ.
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Where,

F(tn, j) = f (tn, j) +

n−1∑
p=0

1∫
o

K

tn, j, tp + µh,up(tp) + hB0(µ)u′p(tp) + h
m∑

v=1

Bv(µ)u′p(tp,v)

 dµ.

G(tn, j) = un−1(tn) + hB0(µ)u′n−1(tn)

We consider the operator Ψ defined by:

Ψ : Rm
−→ Rm

x = (x1, ..., xm) 7−→ Ψ(x) = (Ψ1(x), ...,Ψm(x)),

such that for j = 1, ...,m, we have

Ψ j(x) = F(tn, j) + h

c j∫
o

K

tn, j, tn + µh,G(tn, j) + h
m∑

v=1

Bm(µ)xv

 dµ.

Hence, for all x, y ∈ Rm, we have

‖Ψ(x) −Ψ(y)‖∞≤ h2mbK‖x − y‖∞,

Since h2mbK < 1 for sufficiently small h, then by Banach fixed point theorem, the

nonlinear system (5.9) has a unique solution u′(tn, j), j = 1, ...,m.

Hence, the equation (5.8) defines a unique solution un on σn.

The following result gives the convergence of the approximate solution u to the exact

solution x.

Theorem 5.3.1 Let f ,K be m+2 times continuously differentiable on their respective domains.

If −1 < R(∞) = (−1)m
m∏

l=1

1 − cl

cl
< 1, then, for sufficiently small h, the collocation solution u

converges to the exact solution x, and the resulting errors functions e(v) := x(v)
−u(v) for v = 0, 1

satisfies:

‖e(v)
‖L∞(I) ≤ Chm+1,
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for v = 0, 1 and C is a finite constant independent of h.

Proof. We have, from (5.9) and (5.6), the error e′ which is defined on σn, by e′(t) = e′n(t) =

x′(t) − u′n(t) for n ∈ {0, 1, ...,N − 1} satisfies for all n = 0, ...,N − 1 and j = 1, ...,m

|e′n(tn, j)| ≤hK
n−1∑
p=0

|ep(tp)| + h2bK
n−1∑
p=0

|e′p(tp)| + h2bK
n−1∑
p=0

m∑
v=1

|e′p(tp,v)|

+ hK|en−1(tn)| + h2bK|e′n−1(tn)| + h2bK
m∑

v=1

|e′n(tn,v)| + αhm+2

≤2Kh
n−1∑
p=0

‖ep‖ + 2bKh2
n−1∑
p=0

‖e′p‖ + bKh2
n−1∑
p=0

m∑
v=1

|e′p(tp,v)|

+ bKh2
m∑

v=1

|e′n(tn,v)| + αhm+2,

(5.13)

where α is a positive number.

Therefore, by using (5.5) and (5.8), we obtain for each p = 0, ...,N − 1

‖ep‖ ≤ bh
p−1∑
i=0

‖e′i‖ + bh
p−1∑
i=0

m∑
v=1

|e′i(ti,v)| + αThm+1. (5.14)

Inserting (5.14) into (5.13), we obtain for each j = 1, ...,m,n = 0, ...,N − 1

|e′n(tn, j)| ≤ 2Kb(T + h)h
n−1∑
p=0

‖e′p‖ + Kb(2T + h)h
n−1∑
p=0

m∑
v=1

|e′p(tp,v)|

+ bKh2
m∑

v=1

|e′n(tn,v)| + αhm+1.

(5.15)

We consider the sequence εn =
m∑

v=1
|e′n(tn,v)| for n = 0, ...,N − 1.

Then, from (5.15), εn satisfies for n = 0, ...,N − 1,

εn ≤ 2mKb(T + h)h
n−1∑
p=0

‖e′p‖ + Kbm(2T + h)h
n−1∑
p=0

εp + h2mbKεn + αmhm+1. (5.16)
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Hence, for h <
1√
mbK

, we have for all h ∈ (0, h]

εn ≤
2mKb(T + h)

1 − h
2
mbK︸          ︷︷          ︸

α1

h
n−1∑
p=0

‖e′p‖ +
Kbm(2T + h)

1 − h
2
mbK︸          ︷︷          ︸

α2

h
n−1∑
p=0

εp +
αm

1 −mbKh︸     ︷︷     ︸
α3

hm+1.

Then, by Lemma 1.7.3, for all n = 0, ...,N − 1

εn ≤ α1 exp(Tα2)︸        ︷︷        ︸
α4

h
n−1∑
p=0

‖e′p‖ + α3 exp(Tα2)︸        ︷︷        ︸
α5

hm+1.

Therefore, by using (5.2) and (5.7), we obtain

‖e′n‖ ≤ |R(∞)|‖e′n−1‖ + ρεn + βhm+1

≤ |R(∞)|‖e′n−1‖ + ρα4︸︷︷︸
α6

h
n−1∑
p=0

‖e′p‖ + (ρα5 + β)︸    ︷︷    ︸
α7

hm+1,

where ρ = max{|L j(t)|, t ∈ [0, 1], j = 1, ...,m} and e′
−1 = 0.

Hence by Lemma 1.7.4, we obtain for all n = 0, ...,N − 1

‖e′n‖ ≤
‖e′0‖

R2 − R1
[(R2 − 1)Rn

2 + (1 − R1)Rn
1] +

α7hm+1

R2 − R1
[Rn

2 − Rn
1]

≤
‖e′0‖

R2 − R1
[(R2 − 1)R

T
h
2 + 1] +

α7hm+1

R2 − R1
[R

T
h
2 ]

≤

( 1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ]

)
α7hm+1,

(5.17)

where R1 and R2 are defined by (1.42) such that A = |R(∞)|,B = α6h,K = α7hm+1.

Since, lim
h−→0

(
1

R2−R1
[(R2 − 1)R

T
h
2 + 1] + 1

R2−R1
[R

T
h
2 ]

)
=

1+exp
(

Tα6
1−|R(∞)|

)
1−|R(∞)| < +∞.

Then, there exists γ > 0 such that for all h ∈ (0, h].

1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ] ≤ γ.
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Thus, ‖e′(t)‖ ≤ γα7hm+1, which implies, by using (5.5) and (5.8), that

‖en‖ ≤ ‖en−1‖ + hb‖e′n−1‖ + hbm‖e′n‖ + αhm+2

≤ ‖en−1‖ + (bγα7 + bmγα7 + α)︸                  ︷︷                  ︸
λ

hm+2

≤ ‖en−2‖ + 2λhm+2
≤ ... ≤ ‖e0‖ + nλhm+2

≤ ‖e−1‖︸︷︷︸
=0

+λhm+2 + Tλhm+1

≤ 2λThm+1.

(5.18)

Thus, the proof is completed by taking C = max
(
2λT, γα7

)
.

The following result gives the convergence of the iterative solution uq to the exact

solution x.

Theorem 5.3.2 Consider the iterative collocation solution uq, q ≥ 1 defined by (5.11), if −1 <

R(∞) = (−1)m
m∏

l=1

1 − cl

cl
< 1, then for any initial condition (u′)0(tn, j) ∈ J, the iterative collocation

solution uq, q ≥ 1 converges to the exact solution x for sufficiently small h. Moreover, the

following errors estimates hold

‖uq
− x‖ ≤ γ1β

qh2q + γ2β
qhm+1+2q + β2hm+1,

and

‖(uq)′ − x′‖ ≤ β1h2q + β2hm+1+2q + β2hm+1.

where β, β1, β2, γ1, γ2 are finite constants independent of h and q.

Proof. We define the errors eq andξq by eq(t) = eq
n(t) = uq

n(t)−x(t) andξq = ξq
n = uq

n(t)−un(t)

on σn,n = 0, ...,N − 1.
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We have, from (5.9) and (5.12), for all n = 0, ...,N − 1 and j = 1, ...,m

|(ξq
n)′(tn, j)| ≤ hK

n−1∑
p=0

‖ξq
p‖ + h2bK

n−1∑
p=0

‖(ξq
p)′‖ + h2bmK

n−1∑
p=0

‖(ξq
p)′‖ + hK‖ξq

n−1‖

+ h2bK‖(ξq
n−1)′‖ + h2bK

m∑
v=1

|(ξq−1
n )′(tn,v)|

≤ 2hK
n−1∑
p=0

‖ξq
p‖ + 2h2bK

n−1∑
p=0

‖(ξq
p)′‖ + h2bmK

n−1∑
p=0

‖(ξq
p)′‖

+ h2bK
m∑

v=1

|(ξq−1
n )′(tn,v)|.

≤ 2hK
n−1∑
p=0

‖ξq
p‖ + h2bK(2 + m)

n−1∑
p=0

‖(ξq
p)′‖ + h2bKm‖(ξq−1

n )′‖.

(5.19)

We have, from (5.8) and (5.11), for all n = 0, ...,N − 1 and j = 1, ...,m

‖ξq
n‖ ≤ ‖ξ

q
n−1‖ + hb‖(ξq

n−1)′‖ + hbm‖(ξq
n)′‖

≤ ‖ξq
n−1‖ + hbm

(
‖(ξq

n−1)′‖ + ‖(ξq
n)′‖

)
≤ ‖ξq

n−2‖ + hbm
(
‖(ξq

n−2)′‖ + 2‖(ξq
n−1)′‖ + ‖(ξq

n)′‖
)

≤ ‖ξq
n−3‖ + hbm

(
‖(ξq

n−3)′‖ + 2‖(ξq
n−2)′‖ + 2‖(ξq

n−1)′‖ + ‖(ξq
n)′‖

)
...

≤ ‖ξq
0‖ + hbm

(
‖(ξq

0)′‖ + 2‖(ξq
1)′‖ + ... + 2‖(ξq

n−1)′‖ + ‖(ξq
n)′‖

)
≤ ‖ξq

0‖ + 2hbm
n∑

p=0

‖(ξq
i )
′
‖

≤ ‖ ξq
−1︸︷︷︸

=0

‖ + hb‖ (ξq
−1)′︸︷︷︸
=0

‖ + hbm‖(ξq
0)′‖ + 2hbm

n∑
p=0

‖(ξq
i )
′
‖

≤ 3hbm
n∑

i=0

‖(ξq
i )
′
‖.

(5.20)
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Inserting (5.20) into (5.19), we obtain for each j = 1, ...,m,n = 0, ...,N − 1

|(ξq
n)′(tn, j)| ≤ 6hTbmK

n−1∑
p=0

‖(ξq
p)′‖ + h2bK(2 + m)

n−1∑
p=0

‖(ξq
p)′‖

+ h2bKm‖(ξq−1
n )′(tn,v)‖

≤ h bK(7Tm + 2T)︸           ︷︷           ︸
c1

n−1∑
p=0

‖(ξq
p)′‖ + h2bKm‖(ξq−1

n )′(tn,v)‖,

which implies, by using (5.7) and (5.10), that

‖(ξq
n)′‖ ≤ |R(∞)|‖(ξq

n−1)′‖ + ρm max{|(ξq
n)′(tn, j)|, j = 1, ...,m}

≤ |R(∞)|‖(ξq
n−1)′‖ + ρhc1

n−1∑
p=0

‖(ξq
p)′‖ + ρh2bKm‖(ξq−1

n )′‖.

Now, let ηq = max{|(ξq
n)′‖,n = 0, ...,N − 1}, it follows that, for all n = 0, ...,N − 1

‖(ξq
n)′‖ ≤ |R(∞)|‖(ξq

n−1)′‖ + ρhc1

n−1∑
p=0

‖(ξq
p)′‖ + ρh2bKmηq−1.

Hence by Lemma 1.7.4, we obtain for all n = 0, ...,N − 1

‖(ξ′n)q
‖ ≤
‖(ξ′)q

0‖

R2 − R1
[(R2 − 1)Rn

2 + (1 − R1)Rn
1] +

ρh2bKmηq−1

R2 − R1
[Rn

2 − Rn
1]

≤
‖(ξ′0)q

‖

R2 − R1
[(R2 − 1)R

T
h
2 + 1] +

ρh2bKmηq−1

R2 − R1
R

T
h
2

≤

( 1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

R
T
h
2

)
ρh2bKmηq−1,

(5.21)

where R1 and R2 are defined by (1.42) such that A = |R(∞)|,B = ρhc1,K = ρh2bKmηq−1.

Since, lim
h−→0

(
1

R2−R1
[(R2 − 1)R

T
h
2 + 1] + 1

R2−R1
R

T
h
2

)
=

1+exp
(

Tρc1
1−|R(∞)|

)
1−|R(∞)| < +∞.

Then, there exists γ > 0 such that for all h ∈ (0, h].

1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ] ≤ γ.
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It follows, from (5.21), that for all n = 0, ...,N − 1.

‖(ξ′n)q
‖ ≤ γρh2bKmηq−1,

which implies that, for all q ≥ 1,

ηq
≤ γρh2bKmηq−1

≤ ... ≤ (γρbKm︸  ︷︷  ︸
β

)qh2qη0.
(5.22)

Since, (u0
n)′(tn, j) ∈ J (bounded interval), then there exists α > 0 such that |(u0

n)′(tn, j)| ≤ α,

which implies from (5.10) that, for all n = 0, ...,N − 1

‖(u0
n)′‖ ≤ |R(∞)|‖(u0

n−1)′‖ + ρmα

≤ (|R(∞)|)2
‖(u0

n−2)′‖ + ρmα(1 + |R(∞)|)
...

≤ (|R(∞)|)n
‖(u0

0)′‖ + ρmα
(
1 + |R(∞)| + ... + (|R(∞)|)n−1

)
≤ ‖(u0

0)′‖ +
ρmα

1 − |R(∞)|

≤ |R(∞)|| f (0)| + ρmα +
ρmα

1 − |R(∞)|
= c2.

Hence, there exist positive numbers c3 and c5 such that,

‖η0
‖ = ‖(u0)′ − u′‖ ≤ ‖(u0)′ − x′‖ + ‖x′ − u′‖ ≤ β1 + β2hm+1.

Then, from (5.22), we obtain for all q ≥ 1

‖(ξq)′‖ ≤ βqh2q
(
β1 + β2hm+1

)
. (5.23)

By using Theorem (5.3.1), we deduce that

‖(eq)′‖ ≤ ‖(ξq)′‖ + ‖u′ − x′‖ ≤ β1β
qh2q + β2β

qhm+1+2q + β2hm+1.
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On the other hand, from (5.11) and (5.8), we have by using (5.23)

‖ξq
n‖ ≤ ‖ξ

q
n−1‖ + hb‖(ξq

n−1)′‖ + hbm‖(ξq
n)′‖

≤ ‖ξq
n−1‖ + hb(m + 1)‖(ξq)′‖

≤ ‖ξq
n−2‖ + 2hb(m + 1)‖(ξq)′‖
...

≤ ‖ξq
0‖ + nhb(m + 1)‖(ξq)′‖

≤ ‖ξq
−1‖︸︷︷︸

=0

+hb(m + 1)‖(ξq)′‖ + Tb(m + 1)‖(ξq)′‖

≤ (h + T)b(m + 1)︸            ︷︷            ︸
β3

‖(ξq)′‖

≤ β3β
qh2q

(
β1 + β2hm+1

)
.

By using Theorem (5.3.1), we deduce that

‖eq
‖ ≤ ‖ξq

‖ + ‖u′ − x′‖ ≤ β1β3︸︷︷︸
γ1

βqh2q + β2β3︸︷︷︸
γ2

βqhm+1+2q + β2hm+1.

Thus, the proof is completed.

The following result gives the convergence of the iterative solution uq to the exact

solution x.

Theorem 5.3.3 Consider the iterative collocation solution uq, q ≥ 1 defined by (5.11), if −1 <

R(∞) = (−1)m
m∏

l=1

1 − cl

cl
< 1, then for any initial condition (u′)0(tn, j) ∈ J, the iterative collocation

solution uq, q ≥ 1 converges to the exact solution x for sufficiently small h. Moreover, the

following errors estimates hold

‖uq
− x‖ ≤ γ1β

qh2q + γ2β
qhm+1+2q + β2hm+1,
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and

‖(uq)′ − x′‖ ≤ β1h2q + β2hm+1+2q + β2hm+1.

where β, β1, β2, γ1, γ2 are finite constants independent of h and q.

Proof. We define the errors eq andξq by eq(t) = eq
n(t) = uq

n(t)−x(t) andξq = ξq
n = uq

n(t)−un(t)

on σn,n = 0, ...,N − 1.

We have, from (5.9) and (5.12), for all n = 0, ...,N − 1 and j = 1, ...,m

|(ξq
n)′(tn, j)| ≤ hK

n−1∑
p=0

‖ξq
p‖ + h2bK

n−1∑
p=0

‖(ξq
p)′‖ + h2bmK

n−1∑
p=0

‖(ξq
p)′‖ + hK‖ξq

n−1‖

+ h2bK‖(ξq
n−1)′‖ + h2bK

m∑
v=1

|(ξq−1
n )′(tn,v)|

≤ 2hK
n−1∑
p=0

‖ξq
p‖ + 2h2bK

n−1∑
p=0

‖(ξq
p)′‖ + h2bmK

n−1∑
p=0

‖(ξq
p)′‖

+ h2bK
m∑

v=1

|(ξq−1
n )′(tn,v)|.

≤ 2hK
n−1∑
p=0

‖ξq
p‖ + h2bK(2 + m)

n−1∑
p=0

‖(ξq
p)′‖ + h2bKm‖(ξq−1

n )′‖.

(5.24)
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We have, from (5.8) and (5.11), for all n = 0, ...,N − 1 and j = 1, ...,m

‖ξq
n‖ ≤ ‖ξ

q
n−1‖ + hb‖(ξq

n−1)′‖ + hbm‖(ξq
n)′‖

≤ ‖ξq
n−1‖ + hbm

(
‖(ξq

n−1)′‖ + ‖(ξq
n)′‖

)
≤ ‖ξq

n−2‖ + hbm
(
‖(ξq

n−2)′‖ + 2‖(ξq
n−1)′‖ + ‖(ξq

n)′‖
)

≤ ‖ξq
n−3‖ + hbm

(
‖(ξq

n−3)′‖ + 2‖(ξq
n−2)′‖ + 2‖(ξq

n−1)′‖ + ‖(ξq
n)′‖

)
...

≤ ‖ξq
0‖ + hbm

(
‖(ξq

0)′‖ + 2‖(ξq
1)′‖ + ... + 2‖(ξq

n−1)′‖ + ‖(ξq
n)′‖

)
≤ ‖ξq

0‖ + 2hbm
n∑

p=0

‖(ξq
i )
′
‖

≤ ‖ ξq
−1︸︷︷︸

=0

‖ + hb‖ (ξq
−1)′︸︷︷︸
=0

‖ + hbm‖(ξq
0)′‖ + 2hbm

n∑
p=0

‖(ξq
i )
′
‖

≤ 3hbm
n∑

i=0

‖(ξq
i )
′
‖.

(5.25)

Inserting (5.25) into (5.24), we obtain for each j = 1, ...,m,n = 0, ...,N − 1

|(ξq
n)′(tn, j)| ≤ 6hTbmK

n−1∑
p=0

‖(ξq
p)′‖ + h2bK(2 + m)

n−1∑
p=0

‖(ξq
p)′‖

+ h2bKm‖(ξq−1
n )′(tn,v)‖

≤ h bK(7Tm + 2T)︸           ︷︷           ︸
c1

n−1∑
p=0

‖(ξq
p)′‖ + h2bKm‖(ξq−1

n )′(tn,v)‖,

which implies, by using (5.7) and (5.10), that

‖(ξq
n)′‖ ≤ |R(∞)|‖(ξq

n−1)′‖ + ρm max{|(ξq
n)′(tn, j)|, j = 1, ...,m}

≤ |R(∞)|‖(ξq
n−1)′‖ + ρhc1

n−1∑
p=0

‖(ξq
p)′‖ + ρh2bKm‖(ξq−1

n )′‖.
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Now, let ηq = max{|(ξq
n)′‖,n = 0, ...,N − 1}, it follows that, for all n = 0, ...,N − 1

‖(ξq
n)′‖ ≤ |R(∞)|‖(ξq

n−1)′‖ + ρhc1

n−1∑
p=0

‖(ξq
p)′‖ + ρh2bKmηq−1.

Hence by Lemma 1.7.4, we obtain for all n = 0, ...,N − 1

‖(ξ′n)q
‖ ≤
‖(ξ′)q

0‖

R2 − R1
[(R2 − 1)Rn

2 + (1 − R1)Rn
1] +

ρh2bKmηq−1

R2 − R1
[Rn

2 − Rn
1]

≤
‖(ξ′0)q

‖

R2 − R1
[(R2 − 1)R

T
h
2 + 1] +

ρh2bKmηq−1

R2 − R1
R

T
h
2

≤

( 1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

R
T
h
2

)
ρh2bKmηq−1,

(5.26)

where R1 and R2 are defined by (1.42) such that A = |R(∞)|,B = ρhc1,K = ρh2bKmηq−1.

Since, lim
h−→0

(
1

R2−R1
[(R2 − 1)R

T
h
2 + 1] + 1

R2−R1
R

T
h
2

)
=

1+exp
(

Tρc1
1−|R(∞)|

)
1−|R(∞)| < +∞.

Then, there exists γ > 0 such that for all h ∈ (0, h].

1
R2 − R1

[(R2 − 1)R
T
h
2 + 1] +

1
R2 − R1

[R
T
h
2 ] ≤ γ.

It follows, from (5.26), that for all n = 0, ...,N − 1.

‖(ξ′n)q
‖ ≤ γρh2bKmηq−1,

which implies that, for all q ≥ 1,

ηq
≤ γρh2bKmηq−1

≤ ... ≤ (γρbKm︸  ︷︷  ︸
β

)qh2qη0.
(5.27)

Since, (u0
n)′(tn, j) ∈ J (bounded interval), then there exists α > 0 such that |(u0

n)′(tn, j)| ≤ α,

which implies from (5.10) that, for all n = 0, ...,N − 1
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‖(u0
n)′‖ ≤ |R(∞)|‖(u0

n−1)′‖ + ρmα

≤ (|R(∞)|)2
‖(u0

n−2)′‖ + ρmα(1 + |R(∞)|)
...

≤ (|R(∞)|)n
‖(u0

0)′‖ + ρmα
(
1 + |R(∞)| + ... + (|R(∞)|)n−1

)
≤ ‖(u0

0)′‖ +
ρmα

1 − |R(∞)|

≤ |R(∞)|| f (0)| + ρmα +
ρmα

1 − |R(∞)|
= c2.

Hence, there exist positive numbers c3 and c5 such that,

‖η0
‖ = ‖(u0)′ − u′‖ ≤ ‖(u0)′ − x′‖ + ‖x′ − u′‖ ≤ β1 + β2hm+1.

Then, from (5.27), we obtain for all q ≥ 1

‖(ξq)′‖ ≤ βqh2q
(
β1 + β2hm+1

)
. (5.28)

By using Theorem (5.3.1), we deduce that

‖(eq)′‖ ≤ ‖(ξq)′‖ + ‖u′ − x′‖ ≤ β1β
qh2q + β2β

qhm+1+2q + β2hm+1.
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On the other hand, from (5.11) and (5.8), we have by using (5.28)

‖ξq
n‖ ≤ ‖ξ

q
n−1‖ + hb‖(ξq

n−1)′‖ + hbm‖(ξq
n)′‖

≤ ‖ξq
n−1‖ + hb(m + 1)‖(ξq)′‖

≤ ‖ξq
n−2‖ + 2hb(m + 1)‖(ξq)′‖
...

≤ ‖ξq
0‖ + nhb(m + 1)‖(ξq)′‖

≤ ‖ξq
−1‖︸︷︷︸

=0

+hb(m + 1)‖(ξq)′‖ + Tb(m + 1)‖(ξq)′‖

≤ (h + T)b(m + 1)︸            ︷︷            ︸
β3

‖(ξq)′‖

≤ β3β
qh2q

(
β1 + β2hm+1

)
.

By using Theorem (5.3.1), we deduce that

‖eq
‖ ≤ ‖ξq

‖ + ‖u′ − x′‖ ≤ β1β3︸︷︷︸
γ1

βqh2q + β2β3︸︷︷︸
γ2

βqhm+1+2q + β2hm+1.

Thus, the proof is completed.

5.4 Numerical examples

In order to test the applicability of the presented method, we consider the following

examples with T = 1. These examples have been solved with various values of N,m and

q = m. In each example, we calculate the error between x and the iterative collocation

solution um.

The absolute errors at the particular points are given to compare our solutions with the

solutions obtained by [5, 6, 35, 61, 64].

The results in these examples confirm the theoretical results; moreover, the results

obtained by the present method is very superior to that obtained by the methods in
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[5, 6, 35, 61, 64].

Example 5.4.1 ([5, 6, 35]) Consider the following nonlinear Volterra integral equation

x′(t) = 2 sin(t) cos(t) + 3
∫ t

0
cos(t − s)(x(s))2ds, t ∈ [0, 1],

where x(x) = cos(x) is the exact solution.

The absolute errors for N = m = q = 4 at t = 0, 0.1, ..., 1 are displayed in Table 5.1. We used

the collocation parameters ci = i
m+1 + 1

4 , i = 1, ...,m and R(∞) = − 11
1989 .

The numerical results of the present method are considerable accurate in comparison with the

numerical results obtained by [5, 6, 35].

Table 5.1: Comparison of the absolute errors of Example 5.4.1

t Method in [35] Method in [6] Method in [5] Present method
N = 16 N = 32 N = 32 N = 4

0.0 0.0 0.0 − − −− 0.0
0.1 4.43 E −4 4.49 E −4 1.09 E −3 9.27 E −10
0.2 2.22 E −4 2.42 E −4 7.25 E −4 4.19 E −8
0.3 1.22 E −4 1.62 E −4 8.42 E −4 1.10 E −7
0.4 1.34 E −4 2.00 E −4 3.56 E −3 1.97 E −7
0.5 4.29 E −4 3.38 E −4 7.59 E −3 3.10 E −7
0.6 1.77 E −4 6.10 E −5 5.29 E −3 4.20 E −7
0.7 4.54 E −4 3.22 E −4 1.94 E −3 5.33 E −7
0.8 5.75 E −4 4.35 E −4 2.34 E −3 6.52 E −7
0.9 5.82 E −4 4.47 E −4 1.69 E −4 7.29 E −7
1.0 9.15 E −4 8.00 E −4 − − −− 7.84 E −7
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Example 5.4.2 ([61, 64]) Consider the nonlinear Volterra integro-differential equation given

by

x′(t) =1 −
∫ t

0
x(s)ds, t ∈ [0, 1].

with the initial conditions x(0) = 0 and the exact solution x(t) = sin(t) . Here, f (t) = 1, 1(t) =

0,K(t, s) = −1.

The absolute errors for N = 4, 8 and m = q = 4 at t = 0, 0.1, ..., 1 are displayed in Table 5.2. We

used the collocation parameters ci = i
m+1 + 1

2 , i = 1, ...,m and R(∞) = 1
1001 .

The numerical results of the absolute error function obtained by the present method are compared

in Table 5.2 with the absolute error function of the Taylor method given in [61] and Bessel method

[64] for an approximate polynomial solutions of degree 5.

Table 5.2: Comparison of the absolute errors of Example 5.4.2

t Taylor method [61] Bessel method [64] Present method Present method
N = 4 N = 8

0.0 0.0 0.0 0.0 0.0
0.1 2.00 E −11 2.49 E −7 7.46 E −9 9.38 E −12
0.2 2.50 E −9 4.02 E −7 7.42 E −9 2.74 E −9
0.3 4.33 E −8 3.00 E −7 1.13 E −8 5.27 E −9
0.4 3.24 E −7 2.05 E −7 2.28 E −8 9.43 E −9
0.5 1.54 E −6 2.83 E −7 2.40 E −8 8.80 E −9
0.6 5.52 E −6 3.75 E −7 4.87 E −8 8.80 E −9
0.7 1.62 E −5 1.65 E −7 5.26 E −8 5.90 E −9
0.8 4.12 E −5 1.81 E −7 6.71 E −8 6.14 E −9
0.9 9.38 E −5 1.18 E −6 9.05 E −8 6.90 E −9
1.0 1.95 E −4 9.66 E −6 9.04 E −8 7.34 E −9
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Example 5.4.3 Consider the nonlinear Volterra integro-differential equation given by

x′(t) = f (t) +

∫ t

0
es−tx(s)ds, t ∈ [0, 1].

with f is chosen so that the exact solution is x(t) = 2 cos(t) + 1. The absolute errors for

(N,m) ∈ {(5, 2), (5, 3), (6, 3), (10, 3)} at t = 0, 0.1, ..., 1 are presented in Table 5.3. We used the

collocation parameters ci = i
m+1 + 1

3 , i = 1, ...,m. From the Table 5.3, we note that the absolute

error reduces as N or m increases.

Table 5.3: Absolute errors for Example 5.4.3

t N = 5 N = 5 N = 6 N = 10
m = 2 m = 3 m = 3 m = 3

0 0.0 0.0 0.0 0.0
0.1 0.15 E −4 0.43 E −7 0.16 E −7 0.68 E −10
0.2 0.15 E −4 0.42 E −7 0.32 E −7 0.11 E −8
0.3 0.30 E −4 0.16 E −6 0.54 E −7 0.67 E −9
0.4 0.29 E −4 0.16 E −6 0.19 E −6 0.44 E −9
0.5 0.44 E −4 0.36 E −6 0.12 E −6 0.24 E −8
0.6 0.44 E −4 0.37 E −6 0.22 E −6 0.13 E −8
0.7 0.57 E −4 0.65 E −6 0.27 E −6 0.14 E −8
0.8 0.58 E −4 0.67 E −6 0.34 E −6 0.19 E −8
0.9 0.70 E −4 0.10 E −5 0.47 E −6 0.55 E −8
1 0.71 E −4 0.10 E −5 0.50 E −6 0.12 E −7
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m+1(ΠN)

Example 5.4.4 We Consider the linear Volterra integro-differential equation given by

x′(t) = f (t) +

∫ t

0
scos(s + t)x(s)ds, t ∈ [0, 1].

with f is chosen so that the exact solution is x(t) = et + 2.

The absolute errors e and e′ for m = q = 3 N ∈ {4, 5, 10} at t = 0, 0.1, ..., 1 are presented in Table

5.4. We used the collocation parameters ci = i
m+1 + 1

4 , i = 1, ...,m. From the Table 5.4, we note

that the absolute error reduces as N or m increases.

Table 5.4: Absolute errors of Example 5.4.4

t N = 4 N = 10
e e′ e e′

0.0 0.0 0.0 0.0 0.0
0.1 1.40 E −6 1.37 E −5 5.88 E −9 2.01 E −7
0.2 1.93 E −6 6.75 E −7 5.20 E −10 6.18 E −8
0.3 2.64 E −6 2.27 E −5 1.08 E −8 5.22 E −7
0.4 4.32 E −6 6.04 E −7 9.55 E −9 3.62 E −7
0.5 4.38 E −6 2.59 E −7 8.45 E −9 2.89 E −7
0.6 6.74 E −6 2.30 E −5 8.60 E −9 4.09 E −7
0.7 7.64 E −6 7.65 E −7 3.25 E −8 1.72 E −7
0.8 8.83 E −6 3.76 E −5 6.97 E −8 3.41 E −7
0.9 1.15 E −6 9.60 E −6 1.03 E −7 1.01 E −7
1.0 1.16 E −5 5.98 E −7 1.88 E −7 3.58 E −7

5.5 Conclusion

In this work we developed a method to find the solution of nonlinear Volterra integral

equations. The presented method is based on the Lagrange polynomail formula and

collocating by the real polynomial spline space of degree m + 1 S(1)
m+1(ΠN) This method

tested on four examples. Our method by the suggested method is compared with the

methods in [5, 6, 35, 61, 64]. Our results verified the accurate nature of our approach
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CONCLUSION

This part has considered the iterative collocation method approximation approach for

solving nonlinear Volterra integro-differential equations equations. The method is easy

to implement and has high order of convergence. The convergence of the presented

algorithm is proved and an error estimate is established. Iterative collocation method

can be extended to higher order integro- differential equations. Thus a possible area

of future research is the application of the iterative collocation method method to

higher dimensional problems. One could also investigate the application of iterative

collocation method to singular PDE’s
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CONCLUSION AND PERSPECTIVE

In this thesis, we have developed a new numerical method by using iterative colloca-

tion method to approximate the solutions of nonlinear volterra integral and integro-

differential equations. In the real polynomial spline space S(−1)
m−1(ΠN), S(0)

m (ΠN) and

S(1)
m+1(ΠN) . It is proved that the method is convergent and Error analysis shows the

accuracy gives better. This method is easy to implement and the coefficients of the

approximate solution are determined by iterative formulas without the need to solve

any system of algebraic equations. Moreover, many numerical examples were intro-

duced showing that the method is convergent with a good accuracy and the numerical

results confirmed the theoretical estimates. The present scheme is very easy, accurate

and effective.

Further researches on this kind of problems will be conducted by generalizing the

current numerical method to approximate a high-order nonlinear Volterra integro-

differential equations and high order nonlinear integro-differential equations with

weakly singular kernels.
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